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Strategies for building AI-enhanced audio software with impact
In this paper, we explore the challenge of increasing the uptake of AI-music technology research within 

academia and across the music industry.  We consider two key audiences for AI-music technology: other 

researchers (an effect known in the UK as ‘academic significance’) and amateur and professional music 

practitioners (known as ‘impact’). We review previous work investigating the interactions between code 

repository design, repository usage statistics and citation count. We look at previous work exploring reasons for 

the low uptake of AI-based and other music technology research, such as poor interoperability and lack of 

alignment with the needs of creative practitioners. We then present a preliminary analysis of 93 AI-music-

related GitHub repositories wherein we examine the interaction between repository features and uptake metrics 

such as citations and downloads. We find that AI-music research code repositories providing downloadable 

releases of plugins, which inter-operate with existing music technology, can achieve high download rates. We 

also verify the previous finding for non-music AI repositories that the number of forks positively correlates 

with the number of citations for associated research papers, noting that the number of forks is related to the 

design of the repository. We end the paper by describing how we are currently developing our AI-music 

software using a combination of C++, JUCE, PyTorch, RTNeural and plugin technology, a setup we have 

chosen with an aim to increase significance and impact. We connect our development setup to the findings 

from the review of existing work and our GitHub analysis. 

Author Keywords
AI-music, JUCE, plugins, music technology

1. Introduction
Our vibrant community of AI-music researchers produces an exciting and diverse range of outputs. These 

include applications that provide complete user experiences, software libraries for developers to build upon, 

plugins that can be used in existing software such as digital audio workstations (DAWs), data sets, foundational 

and pre-trained neural networks, and other models.

In this paper, we refer to the software ‘output’ created by the community as ‘AI-music technology’; this 

incorporates music technology and involves using artificial intelligence and/or machine learning techniques to 

provide novel features that would not otherwise be easy to implement. Whilst there has been an “endless 

stream” of AI-music research since the 1960s [1] we expect that many researchers will be familiar with the 

problem of low uptake of their creations. Low uptake means that the underlying research will have limited 

traction with. or influence on, other researchers and - just as crucially - the music technology industry. By the 

music technology industry, we include all potential technology users across the amateur/professional spectrum. 

Academic and industrial uptake of this sort is essential, in the UK at least, because these are the metrics used to 

evaluate our work in order to assign funding.
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In this paper, we analyse some of the issues that AI-music researchers face when looking to increase the uptake 

of their work. Then, partly based on this research but also our own experiences, we outline methodological 

steps both in the engineering of software and the way it is made available to the public that we believe could 

significantly increase the uptake for such - both in academia (for further research development) and in the 

industry (for building products).

To further motivate our work, we as researchers should consider the broader ethical context of AI deployment 

and the current climate around AI-music technology specifically, which is exciting but also problematic. Music 

professionals and the general public have seen a series of very impressive but, in some cases, ethically dubious 

systems such as deepfake singing voice synthesizers1 and end-to-end text-to-music systems[2]. Whilst these 

systems can be headline-grabbing, we do not think they represent the rich diversity of work happening in our 

community or, indeed, many of the values of the community and the creative practitioners on whom this work 

can potentially have a profound impact.

The climate of excitement - daresay hype - around AI-music technology at least presents AI-music researchers 

with an opportunity to present their work to a larger audience. And in many cases, that work is much more 

aligned with the needs of creative practitioners than those other systems. But the problem we want to crack is 

what is the best way to present and engineer that work so that it can be easily used by this audience as well as 

increasing the academic significance of the work along the way. To address this problem, we consider the 

following broad research questions and make some initial progress in responding to them here in this paper:

2. Previous work investigating AI-music technology, significance 
and impact

2.1 The interaction between repository features and academic significance

It has become common practice for researchers who build AI systems across various application domains (such 

as large language models, speech recognition, and reinforcement learning) to release open-source code 

repositories alongside the associated research papers. The same is increasingly becoming the case for AI-music 

researchers. The question arises as to whether there is any consensus about best practices for sharing AI 

1. RQ1 What are the uptake levels for AI-music research in academia and industry, and what factors might be 

associated with high and low uptake?

2. RQ2 What do researchers (designing) and musicians (using) of AI-music research have to say about uptake 

and why or why not it might be used?

3. RQ3 What is considered best practice when sharing research software more generally, and is this compatible 

with current practices in AI-music research?

4. RQ4 What kind of design methodological changes, focusing on technology stacks, will enable greater 

uptake of AI-music research across academia and the music industry?
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research software with academic communities to maximise academic significance and if this can be applied to 

AI-music software.

Considering mainstream AI research, a recent paper from Bhattarai et al. investigated the relationship between 

interaction statistics on GitHub and academic significance in terms of citations[3]. The interaction statistics 

were the number of stars (equivalent to storing a favourite in a web browser), forks (holding a copy of a 

repository in one’s personal account), watchers (signing up for notifications about updates to a repository) and 

issues (posting a question or bug report to a repository). The researchers found these metrics were positively 

correlated with higher citations. They do not attempt to show causation, so it is not clear if citations cause 

repository activity, vice-versa or both. 

In their article ‘What makes a popular academic AI repository’, Fan et al. analysed engineering practice in 

popular and unpopular GitHub repositories, where popularity is the number of stars[4]. Firstly, they note that 

there appears to be a positive correlation between stars and citations, as did Bhattarai et al.. Then, they identify 

features that differentiate popular from unpopular repositories from a set of 21 numerical features relating to 

code, documentation, and reproducibility (after [5]). The researchers present the features as a checklist for 

research repositories to align their design with those of successful repositories. The checklist includes 

technology stack suggestions (e.g. use PyTorch, not tensorflow), provision of good documentation, providing 

pre-trained models and having well-engineered code. Many of these features seem like standard good 

engineering, but the difference here is their empirical verification. 

Moving to computer music research software, McFee et al. provide detailed advice on repository design, 

dataset provision and engineering practice aimed at Music Information Retrieval researchers who wish to 

improve the reproducibility and utility of their work[6]. Their advice is strongly aligned with the empirical 

observations from Fan et al. noted above concerning dataset provision, good engineering practice, 

documentation, and so forth.

2.2 Issues affecting non-academic impact

The three papers discussed above provide excellent advice concerning the design of public-facing source code 

repositories that other academics can use easily and which might, therefore, lead to greater academic 

significance. But how should researchers go about increasing non-academic impact? To approach this, we can 

first review some surveys that examine uptake and opinion around AI-music software amongst non-academic 

groups.

In a 2021 survey of 118 people, 41% of whom were professional musicians, Frid and Ilsar investigated several 

themes, including desirable roles for AI within existing creative processes[7]. They “observed generally 

positive attitudes to ML/AI as tools in composition processes” but noted negative themes, such as not wanting 

ML/AI to influence certain aspects of the artistic process.
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Knotts and Collins surveyed 116 music software users in 2020, examining uptake and attitudes towards AI-

music technology[8]. Whilst only around 7% of the respondents reported music as their primary source of 

income, similar themes emerged around desirable roles for the technology in the creative process: “Few 

respondents were seeking their own replacements: Musicians usually craved collaborators and assistants who 

would help with creative workflow”. So it would seem from this analysis that creatives are interested in 

working with this technology, but the nature of the role it takes in the creative process is crucial to them. 

Switching from AI-music technology to the design of novel Digital Music Instruments (DMIs), several 

researchers have analysed factors relating to impact, such as longevity and uptake. For example, in a 2018 

paper, Borbon and Avila identified the reasons for the lack of longevity for DMIs as a focus on novelty over 

sustaining practice, lack of pedagogy and community engagement, and evaluation limited to the artefacts rather 

than complete ecosystems [9]. In another paper aiming to explain the limited impact of DMIs, Goudard noted 

the following factors: the ephemeral nature of sound, constantly evolving technology, and a focus on unique 

performance contexts (e.g. demonstrations at conferences) [10]. Calegario et al. discuss reproducibility in 

DMIs based on information in published papers and case studies; they even go as far as attempting to re-create 

DMIs using the published information [11]. They discuss the challenges of obsolete software and suggest using 

more standard/widespread programming languages and technology stacks. Digging deeper into choosing the 

appropriate technologies for implementing DMIs, Sullivan and Wanderley reviewed 40 years of NIMEs. They 

concluded that “a DMI may not be viable unless basic stability, reliability and compatibility standards have 

been met in the design process [12].

To summarise, there are some clear themes in the literature concerning academic significance and non-

academic impact. Designing your source code repository according to best-practice guidelines is measurably 

associated with increased citations and can enhance the reproducibility of your work. Recent work identifies  

quite specific repository features, such as technology stack choice, that are associated with popularity, which is 

then associated with academic significance. For non-academic impact, creative practitioners are interested in 

using AI technology but are very concerned with the role AI technology plays in their process - essentially, 

what they are happy to give over to AI and what they are not. The community around the technology is also 

important, and other factors that researchers identify that should support increased impact include technology 

stack choices, stability, and reliability. 

2.3 Technology stacks used by music professionals

The research presented in the papers we have cited above, which investigate factors affecting DMI uptake and 

longevity, clearly identifies a relationship between the technology choices researchers make and the potential 

impact of their work outside academia in the music industry. But which technologies, or which kinds of 

technologies, do music producers - both amateur and professional - tend to use? While there is some (though 

limited) academic work analysing the practice and range of tools used in modern-day music production, we 

found it hard to find a recent analysis or survey of how professional musicians make music in the 2020s. 
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However, it is generally accepted that the following list covers most of the available categories of technologies: 

traditional instruments, digital audio workstations (DAWs), plugins, synthesizers, sequencers, samplers, mixing 

tools, recording hardware and (MIDI) controllers[13][14].

The items in that list are not mutually exclusive or fully descriptive; several items can be hardware or software, 

plugins can provide the functionality of several of the other items (e.g., synthesizers and mixing tools), and 

DAWs package several of the items into a single application and allow for functionality extension via plugins. 

However, this list can be regarded as the contemporary technology ecosystem for music production.

This leads to the question of the underlying technology used to create the items in this list. Ignoring the 

electrical engineering aspects of the hardware devices, most, if not all, of the software in the list - DAWs, 

plugins, digital sound synthesis algorithms, etc.- is written in C or C++ and provided as natively compiled 

binaries. Music producers expect to be able to download installer programs and install and execute the software 

straightforwardly, often in an integrated fashion.

2.4 Technology stacks used by music and AI-music researchers

How do the technology stacks used by AI-music researchers compare to those identified above for commercial 

music software? In their survey, Knotts and Collins found that common languages for self-built AI-music 

systems were SuperCollider, Max/MSP, Python, PureData and Javascript[8]. They list other, less common 

languages, such as ChucK and Csound, but interestingly, given our discussion above, they make no mention of 

C++. Yet it is C++, as noted above, which is the chosen language used to develop commercial music software.

Tatar and Pasquier’s 2019 typology of musical agents, which analysed a diverse set of recent and historical 

publications in AI-music, confirms this list: Max, Max for Live, PureData, Processing, SuperCollider, Python, 

and Java[15]. They also list several essential areas needing development to further the AI-music field, and this 

list is strongly aligned with our work’s objectives in investigating ideal technology stacks: deployment and 

accessibility, standardisation and interoperability, and real-world applications.

One area of rapid growth in computer music technology stacks, and therefore worthy of mention here, is 

livecoding[16]. Livecoding languages form a growing list of 65 languages from Alda to xi with multiple 

development environments and frameworks2. Livecoding has a different perspective on the use of technology 

in that it puts the writing of code in real-time upfront in its artistic practice, which immediately sets it apart 

from the practice of professional musicians. Indeed, some live coders are determinedly motivated by a desire to 

move away from the standard technology ecosystem used by other music practitioners: ‘I was also tired of 

making music with a DAW because it was tedious’ - Mike Hodnick in [17].

Limited research and development connects livecoding with AI and machine learning, and the technology 

stacks tend to be more obscure and even further from those familiar to music producers. For example, Bernado 
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and Kiefer’s web-based SEMA system allows for the creation of new languages that can interoperate between 

machine learning and audio components [18].

Returning to ‘mainstream’ AI-music research, a limitation of commonly used computer music languages such 

as SuperCollider, PureData, and Max/MSP is the lack of machine learning capabilities. Whilst data mining and 

neural network libraries for these languages do exist[19][20], they do not provide the kind of feature set 

required for contemporary deep-learning work found in TensorFlow or PyTorch. Another limitation is music 

producers’ lack of familiarity with the tools and their lack of interoperability with mainstream music 

technology.

Another common approach, one that allows for the deployment of neural networks with contemporary features 

and which enables researchers to share their work with others easily, is the use of web technology. For 

example, the MIMIC platform provides a browser-based programming environment with integrated machine-

learning capabilities[19], and the Magenta project provides a range of musical neural network models that 

work in the browser[20].

The browser is a powerful platform for local inference (where a pre-trained neural network executes on the 

local machine). Still, it is not generally appropriate for training, except for interactive training with small 

datasets, as seen in Learner.js[21]. For more extensive training tasks, we believe using a machine learning 

framework such as Tensorflow or PyTorch and appropriate hardware is necessary. This view is supported by 

the technology currently used, at least in the training part of many ‘deep-music’ systems.

2.5 Research technology aimed at creative practitioners

Aside from the web-based systems mentioned above, there are other examples of AI-music research systems 

designed to be used by creative practitioners. We end our review of previous work by highlighting some of 

these systems as their approach relates to ours. Fiebrink’s Wekinator allows non-machine learning specialists to 

use an interactive machine learning workflow to specify and train a neural network ‘meta-instrument’ [22]. 

Wekinator has undergone various re-implementations, from its original Java-based system, through a C++ 

library called RAPIDMIX [23] and a Javascript library called learner.js [19]. Roberts et al.’s Magenta Studio is 

a set of Max for Live (Ableton Live plugins) which wrap pre-trained models running in tensorflow.js [24]. 

Faust can export computer music systems to many formats, including VST [25]. Other examples of 

interoperable software are the PureData VST hosting external [26] and the embeddable libPD [27].

Closest to the current technology approach we are employing, which we describe later in this paper, is the 

small but growing number of researchers who make their AI-music systems available as native VST plugins 

typically written in C++. Examples are the DDSP timbre transfer plugin3, IRCAM’s RAVE VST4, Steinmetz’s 

various neural effects plugins5, and Atkins’ Neural Amp Modeller6. Neutone is another neural network plugin, 

but in this case, it is designed to allow people to deploy their models easily without needing to develop their 

own plugin6.

file:///tmp/learner.js
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3. Analysis of AI-music software on GitHub
In this section, we will describe an analysis we have carried out of AI-music and related GitHub source code 

repositories. We use this study to shed some light on the levels of uptake for these kinds of repositories and 

how uptake interacts with the kinds of technology the researchers use.

We acknowledge that GitHub might not be the first place that music producers will visit to access music 

software, but it does have a significant number of AI-music repositories with downloadable binaries that can be 

found via a Google search for this kind of software and music technology websites do link out to GitHub, e.g. 7.

3.1 GitHub analysis method

The `data goal’ of this analysis is to have a list of GitHub repositories, with associated research papers where 

possible, and a range of statistics and labels describing each repository. The high-level steps we took were as 

follows:

To gather the initial set of research papers, we identified four recent review papers with extensive reference 

lists covering AI-music topics [1][15][28][29]. We then extracted the reference lists from the text in the PDFs 

and converted this list to BibTeX format giving us a list of 660 papers. Next, we needed to gather the PDF files 

for the 660 papers so we could extract GitHub repository links.

Accessing the PDFs for the papers involved searching Google Scholar for the paper titles, extracting the links 

to potential PDFs, and then importing the links back into the BibTeX file. We ran a Javascript program in a 

web browser to politely ‘scrape’ Google Scholar - it was necessary to pause between requests and to complete 

captchas to avoid being blocked occasionally. Eventually, we had a folder containing 660 HTML files 

representing the search results for each of the papers. Having the complete search return files would allow us to 

extract more data later without needing to hit Google Scholar again. We extracted the top links from the HTML 

files and put these into the BibTeX entries for each paper. To download the PDFs, we imported the BibTeX to 

Zotero’s desktop app and used its ‘Find available PDFs’ feature to download the PDFs. We found this achieved 

a better hit rate than directly downloading from the links on the HTML files for the papers with a script. We 

exported the papers as PDFs from Zotero and parsed all PDFs, looking for GitHub links. Some papers had 

more than one GitHub URL, so we selected the first one. Eventually, we had a list of around 140 GitHub 

repositories.

1. Gather a large set of recent AI-music research papers

2. Extract GitHub repositories from the research papers

3. Gather GitHub repository statistics via the GitHub API

4. Clone repositories and undertake further analysis to identify main languages and assign ’type’ labels.
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At this stage, we added some other repositories of interest: wekinator, Supercollider, puredata, essentia and 

several neural network-based plugins that had not come up in our paper search, including the top 3 plugins 

from the 2023 Audio Programmer Neural Audio Plugin Competition8.

The next step was to use the GitHub API to gather statistics about the repositories in our list. We gathered the 

following statistics: stars, forks, downloads, watchers, open issues, network count (no. forks and forks of 

forks), commit count, age (days), languages used, total amount of code and percentage of code per language. 

We were able to gather statistics on 93 repositories as several did not exist or the repository URL extracted 

from the paper was not valid. 14 of the 93 repositories provided ‘releases’, which are necessary to gather 

download statistics. Releases generally consist of a packaged version of the software or a platform-specific 

installer. Some repositories do not provide releases but do provide links to downloadable installers. We did not 

process these as we would not be able to count the number of downloads for links to external sites.

In the final stage of data gathering, we cloned the 93 repositories and did some more analysis. We fed the 

README files from each repository to ChatGPT4 and used the following prompt: “read the attached readmes 

into your LLM and tell me what they are about. Do not use Python code to analyse the readmes - do it with 

your large language model capabilities. Try to come up with a tag for each one, namely application, plugin, 

tool, library, data set or model. Print out a table with the sub-folder name and the label you selected. ”. We had 

to repeatedly request continuation to get the complete list. We checked around ten outputs and were happy that 

it looked to be making reasonable labelling decisions.

We appreciate that there is a lot more analysis that is possible than what we have undertaken to date, including 

in-depth automated code analysis, but for now, we leave that to future work by ourselves and others, and we 

shall shift to examining the data we did gather. With our resulting list, we feel that we are presenting a window 

on the current ‘scene’ (in late 2023) of open-source computer music and AI-music projects. We provide data, 

including the list of papers, the GitHub repositories and associated statistics in a GitHub repository9.

3.2 Results

We identified 93 repositories through the method described in the previous section. All 93 had three or more 

stars, and 88 had one or more network links. 14 repositories provided releases, allowing us to gather download 

statistics.



AIMC 2024 (09/09 - 11/09 ) Strategies for building AI-enhanced audio software with impact

10

Figure 1 shows information about total downloads and download rates for different types of repositories. 

Although this data is from the small set of 14 repositories that provided releases and, therefore, download 

statistics, it clearly shows that several types, and especially plugins, can achieve high numbers of downloads 

and a high download rate. We carried out a non-parametric Mann-Whitney U test to evaluate the significance 

of the difference between these distributions. This would allow us to state if the range of download counts and 

rates is significantly different between the repository categories. The test indicated that the distributions are not 

significantly different (no p-values less than 0.05), but we believe the small sample size is a limiting factor.

Figure 2 shows the type of repository against the number of stars and stars per day. The sample size here was 

91, which is the number of repositories with one or more stars and less than 10,000 stars (we considered the 

two repositories with more than 10,000 stars as outliers). All repository types appear to be able to gather many 

stars, with the exception of tools. Plugins and libraries appear to have the highest rate of star gathering. The 

Mann-Whitney U test was more powerful here with the larger sample size. It found the following p-values 

Figure 1: Type of repository against total downloads over all time (top) and download rate 
(bottom). Plugins and applications achieve high numbers of downloads. Plugins achieve the 

highest download rates. Based on 14 repositories that provided releases.

Figure 2: Type of repository against the distribution of total number of stars (top) and stars per 
day (bottom).
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around or below 0.05: application stars vs tool stars (p = 0.047), model stars vs tool stars (p = 0.059), library 

stars vs tool stars (p = 0.059), plugin star-rate vs. tool star-rate (p = 0.058). So it appears that the distribution of 

stars for tools is the most different.

Table 1: Correlations between various metrics and citation count. The dataset was filtered to stars in the range 

1-8,000 and citations 1-2000 to remove outliers. The sample size was 65. 

Next, we investigated the interaction between various metrics and citation count. We wanted to see if we could 

repeat the observation for non-music AI repositories from [3] and [4] that forks and stars correlate positively 

with citations for AI-music repositories. We present the results in Table 1. Prior to computing the correlations, 

we filtered the data only to include repositories with stars in the range 1-8,000 and citations 1-2000 to remove 

outliers. The sample size was 65. Age correlates positively with citation count, somewhat unsurprisingly. Forks 

and Network size also correlate positively with citations. This confirms one of the observations from the other 

papers. This observation does not tell us if there is causation or which way the influence, if there is any, flows. 

Watchers and stars are close but not significantly correlated with citations. So we could not verify the 

previously reported correlation between stars and citations. A possible explanation for the stronger relationship 

between forks and citations than stars and citations is that forks are a stronger action on GitHub. Forking adds a 

copy of the repository to your account. Starring is a weaker action, more akin to “favouriting” a website. 

Correlation P-value

Age (days) 0.473 0.000

Forks 0.345 0.005

Network Count 0.345 0.005

Watchers 0.221 0.077

Stars 0.200 0.110

Open Issues 0.164 0.192

Commit Count 0.057 0.650

Downloads -0.049 0.700

Main language lines -0.087 0.493

Code total -0.091 0.473
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4. Our approach to AI-music technology
We shall now describe our approach to AI-music technology construction as a case study and connect it to the 

themes that have emerged in the previous sections of the paper. We do not wish to claim that the workflow is 

completely novel, but it is something we have developed iteratively through the development of many different 

systems.  The workflow proceeds in several distinct phases:

Phase 1: Data preparation and model development. This stage is concerned with building the AI and machine 

learning models that power our tools and, where appropriate, sourcing and preparing the data. If the models 

involve neural networks, we build and test them using Python and PyTorch. Python is a quick and easy 

language to experiment with, and PyTorch provides deep learning capabilities and allows for easy export of 

models using its TorchScript system. This stack is extremely standard for AI research and is aligned with Fan 

et al.’s findings [4]. Torchscript and PyTorch are also quite interoperable, an area identified for improvement in 

DMI research by several studies we cited earlier. 

Phase 2: Model deployment. We currently use C++, libtorch and the JUCE framework to deploy our models 

either in standalone native apps or as VST3 plugins. libtorch provides an interface between C++ and most of 

the PyTorch functionality. This includes TorchScript, which can load in a model exported from Python code. 

TorchScript models run quite fast in libtorch, but we also use the RTNeural library because it allows certain 

models to run significantly faster than libtorch. RTNeural only supports a small subset of the libtorch 

functionality and does not support training, only inference. The motivation for this approach to deployment is 

achieving non-academic significance by inter-operating with existing music technology. 

Phase 3: Publishing on GitHub: The next step is sharing our work with others by putting it on GitHub. We aim 

to follow the best practices for making our GitHub repositories helpful for both researchers and everyday users, 

even though figuring out the best way to do this is still a work in progress. We described the current best 

practice for AI source code repository design when aiming for academic significance, and we were able to 

repeat some of the findings in our GitHub analysis. Things to consider are good documentation, well-organised 

code and other good engineering practices. Concerning non-academic impact, our preliminary GitHub data 

analysis showed that plugins can achieve high download rates but also that providing releases on GitHub is 

necessary to access those statistics. 

Phase 4: Workshops and evaluation. We have started to run regular workshops with musicians to show them 

how to work with a range of AI-music tools, including our own plugins and applications, third-party web-

based services and other AI-powered plugins. At this stage, we also gather feedback from users, which we can 

feed into future iterations of the software. We have found that macOS is quite difficult to work with in 

workshop scenarios due to security controls on the running of non-notarised software, many different versions 

of macOS being used by musicians and the mixture of Intel- and ARM-based hardware. Going forward, we 

would recommend notarised universal binary builds that target macOS 11 and later. Windows tends to be less 
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problematic, but one has to consider which version of Windows to target at least. We typically provide the rare 

Linux-using musicians with source code so they can build the software themselves. 

5. Conclusions
Here we revisit the four research questions and describe the initial progress we have made against them. 

RQ1: What are the uptake levels for AI-music research in academia and industry, and what 
factors might be associated with high and low uptake?

Our observations show that AI-music code repositories can receive many thousands of stars and downloads 

and that this can happen both in a short space of time and over a longer period. So putting software on GitHub 

works and is clearly a pathway to significance and impact. Previous work has found correlations between 

GitHub interactions such as stars and forks and the number of citations. We found correlations between 

citations and both repository age and forks but not stars. Furthermore, we did not find any obvious relationship 

between the chosen main language for the software and these metrics, or the category of repository, aside from 

tools showing low uptake.

RQ2: What do researchers (designing) and musicians (using) AI-music research have to say on 
uptake, and why or why not it might be used?

Based on our analysis of previous work, musicians are open to using AI-music tools, but an important factor is 

the role the system plays in the creative workflow. They do not seek their own replacement - they want to 

retain authorial autonomy over the creative process. Also, previous analyses of new digital music instruments 

and their uptake suggest that to see sustained use, the tools need to be interoperable and robust, and researchers 

should consider using mainstream music technology stacks.

RQ3: What is considered to be best practice when sharing music research software with the 
research community in general, and is this compatible with practices in AI-music research 
software?

Our review of previous work suggested general agreement on guidelines pertaining to the design of source 

code repositories, such as good engineering practice, examples and documentation, and provision of datasets 

and pre-trained models. This could be applied to the research software repositories we examined, and in some 

cases, it already is. We also propose that researchers provide downloadable releases of their software, which 

will allow them to generate DOIs for their repositories and gather download statistics.

RQ4: What kinds of design methodological changes, focusing on technology stacks, will 
enable greater uptake of AI-music research across academia and the music industry?

We have presented statistics which indicate that releasing AI-music systems as plugins with executable 

releases can lead to very high download rates. We have described our current development methodology and 

explained how it is designed to allow for rapid development with an output of a product that creative 
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practitioners are prepared and able to pick up and use. Drawing together threads developed throughout this 

paper, we have proposed a coherent methodology for helping with the traction (academic significance and 

industry impact) for new AI-music systems. We plan to develop this methodology and will report on that 

project and any lessons learned from doing so.

Ethics statement
The work described in this paper used data that is available via the internet, such as Google Scholar pages and 
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