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Abstract

We present evidence for a relationship between two objective measures of the information dynamics of
music and points of structural importance in the music as analysed by human experts. Our approach
is motivated by ecological validity: rather than taking musical stimuli and artificially simplifying
them to make their study tractable, we have sought and found music which is appropriate to our
study. We give a novel, detailed analysis of one piece, Glass’ Gradus, and show how the analysis
corresponds with the information dynamics of the piece as heard. To show that this correspondence
generalises, at least to music in a similar style by the same composer, we go on to analyse Glass’ Two
Pages. We suggest that this research provides further evidence that information-dynamic modelling is
a worthwhile approach to the study of music cognition and also has the potential to be a powerful tool
to increase objectivity in data-based music analysis.



1 Introduction

Analysis of minimalist music poses unique challenges arising from the peculiar characteristics of its
subject. One such characteristic reflects the use of compositional processes that are intended to be
directly perceptible on the surface of minimalist music and (often) uniquely to determine its interpre-
tation. Bernard (1996) suggests that, if there is nothing but surface, then there might seem to be little
point in an analyst hunting for more subtle structural interpretations which do not exist. Such diffi-
culties have proven significant barriers to development of general methods for analysis of minimalist
music.

We propose a new method for the study of minimalist music, involving quantitative analysis by a
computational model of human perception of music. Given the difficulties noted above, our method
has several advantages: first, it analyses only the information objectively available on the musical sur-
face; and, second, it is appropriate to use a model of human perception to examine surface processes
intended to be directly perceived by listeners. Furthermore, in keeping with common characteristics
of minimalist music, the model we propose operates over very simple representational primitives and
is inherently dynamic in its mode of operation.

However, we argue that our method is not limited to minimalist music, and that more complete
models of the information dynamics of music will, in future, provide an objective basis for the study of
human cognitive—and hence musical—responses to music of all kinds. The current work, therefore,
is the first step on a long journey.

In the following sections, we first outline our perceptual model and, in this context, explain the
methodology of our approach. Then we show how it can be used to predict the detailed structure of a
musicologist’s analysis of a piece of music, Philip Glass’ Gradus (1968), and to identify points in the
music which, we argue, constitute structural boundaries, and which therefore constitute salient parts
of the musical structure. We next demonstrate how the same system (without ad hoc re-configuration)
predicts the structure of another Glass piece, Two Pages (Glass, 1969), by comparison with section
boundaries given by the composer and two analysts. In conclusion, we argue that models such as that
presented here have the potential to form the basis of a more objective, and therefore more rigorous,
approach to music analysis.

It is important to note that, because we present this discussion from a music-analytic perspective,
and we do not apply rigorous behavioural verification to the outputs of our model—to do so would
be to miss the point of our work. Rather, the aim is to refute or establish evidence for the validity of
our model in the musicological context. Further psychological and neurophysiological validation is
available elsewhere (Pearce and Wiggins, 2006; Meyer, 1956; Huron, 2006) and will be the subject of
our future research.

2 An Information-Theoretic Model of Music Perception

Pearce and Wiggins (2006) evaluate a statistical model of musical pitch perception which predicts the
expectation generated by monodic tonal melodies; its theoretical roots are in the work of Narmour
(1990) and it is based in practice on that of Conklin and Witten (1995). The expectancy model, which
is illustrated in Figure 1, is built from two memory models, one short-term memory (STM) and one
long-term (LTM).

Each model takes as its musical surface (Jackendoff, 1987; Wiggins, 2007a) sequences of musical
events (in this case, notes as written in the score, and not as performed—see Wiggins, 2007b), defined
in terms of properties such as onset time, pitch, duration and key. The representation scheme can

1



STM
(this piece)

LTM
(all pieces)

DistributionNote
data

Pitch expectancy

"Unexpectedness"

Entropy

Probability
in context

Information
Content

"Strength of
Expectation"

Figure 1: Our development of Pearce’s (2005) cognitive model.

also express derived features (such as pitch interval) and interactions between features (denoted by
⊗). Here, we use three pitch based features: chromatic pitch (Pitch), chromatic pitch interval
(Interval) and chromatic scale degree (ScaleDegree), and a feature representing the interaction
of pitch interval and scale degree (Interval ⊗ ScaleDegree). In addition, the feature Rest
represents a rest preceding an event and expresses interactions between the three pitch-based features
described above and temporal structure in Gradus.

The two models are able to combine predictions derived from a number of different representations
into a single distribution over some basic feature space: Pitch in the current research. They do
not differ in their internal operation, but in their exposure to the data from which they learn. The
LTM is trained, prior to listening simulation, on a database of about 900 tonal melodies (Pearce and
Wiggins, 2006), and may or may not learn from the current piece of music, depending on parametric
settings. The STM, conversely, has no prior knowledge, and learns dynamically, only from the current
piece of music. In this way, we model “typical human Western musical experience” (LTM) and
“on-going listening to unknown music” (STM). We expect, therefore, that the LTM will contain a
broad model of tonal melody, derived by generalisation from its training melodies, while the STM
will be very specific to whichever piece is currently being exposed to it; the current studies support
these expectations. Pearce and Wiggins (2006) re-analyse behavioural data collected by Cuddy and
Lunny (1995), Schellenberg (1996) and Manzara et al. (1992), demonstrating that the statistical model
predicts the expectations of listeners in a variety of musical contexts significantly better than the two-
factor model of Schellenberg (1997).

Armed with our statistical model of melodic expectation, we apply information-theoretic princi-
ples (Shannon, 1948) to its output. We appeal to two concepts from information theory: first, infor-
mation content, which measures the amount of effort (literally, the number of binary digits) needed
to transmit a piece of information from an originator to a receiver, given a known, shared context;
and, second, entropy, which, by analogy with thermodynamic entropy, measures the amount of dis-
order in a signal (or, more positively, the inverse of the degree to which it is structured). Here, the
shared context is a model of typical implicit musical knowledge (the LTM). The information content
corresponds with unexpectedness: if something is expected and therefore not unfamiliar, it is already
known in context, and therefore can be transmitted efficiently. Entropy corresponds intuitively with
weakness of expectation of the outcome governed by a given distribution—that is, low entropy im-
plies a strong expectation of what the outcome will be. Both measures are expressed in terms of the
number of bits required to transmit information.
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We emphasise that our model uses no domain-specific, programmed rules: we have explicitly
modelled pitch, time and key and their mathematical derivatives as our musical surface (Wiggins,
2007a,b), but no knowledge of musical structure (i.e., time-sequential relationships between events
on the surface) is programmed into the model. Therefore, all the model’s knowledge of musical
structure, and hence its expectations, are derived through statistical induction of regularites in the data
with which it is trained. For this reason, we claim, this model may be an explanatory theory (in the
sense of Wiggins, 2007b) underlying such descriptive theories as the Gestalt Principles (Pearce and
Wiggins, 2006).

3 Methodology

The methodology we have adopted in this study is different from the usual psychological route. Rather
than resorting to behavioural studies of significant numbers of human subjects, to supply evidence
or otherwise of cognitive validity, we compare the predictions of our model with the independently
produced analyses of the first author, who is an expert analyst of minimalist music (Potter, 2000), to
evaluate musical validity. We suggest that this is an appropriate approach because the basis of our
model has already been validated in the cognitive context (Pearce and Wiggins, 2006; Huron, 2006).
Of course, it might be argued anyway that music analysis actually summarises the perceptions of
many listeners; however, we make no such assumptions here: we are interested in the music-analytic
results themselves, and in their relationships with our model’s predictions. If the relationships are
strong, then our method may be useful for music analysis; further, a successful explanatory theory of
that analysis will help us understand the relationship between music analysis and cognition.

4 Method

4.1 Feature Selection

As discussed above, the model is capable of drawing together inferences made over multiple represen-
tations derived from the musical surface. This raises the question of choosing features that yield the
richest structural representations of the works analysed here. In order to address this issue, we have
selected sets of features that maximise the overall predictability (equivalent in practice to minimising
the average information content) of each work as seen by the model. This was achieved by running
a forward stepwise selection algorithm (Aha and Bankert, 1996; Kohavi and John, 1996; Blum and
Langley, 1997) which, given an empty set of features, considers on each iteration all single feature
additions and deletions from the current feature set, selecting the addition or (preferably) deletion
that yields the most improvement in the performance metric, terminating when no such addition or
deletion yields an improvement.

4.2 Information Dynamics

We are interested in the Information Dynamics—the changes in information content and entropy—of
our model as it simulates musical listening. We hypothesise that (changes in) these measures will
correlate with musically significant events, and we attempt to refute this hypothesis by comparing our
measures with composers’ perceptually relevant score annotations and our independent analyses.

As well as considering the changes in information content event-wise, throughout a piece of music,
we can consider the average information content across the piece as a measure of the degree to which
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it is structured (perhaps what an analyst would call “rigour”). So we hypothesise that a strictly formal,
systematic piece would have a lower average information content (i.e., it would be more structured)
than an unsystematic piece. This is another means by which we attempt to refute a connection between
our model’s output and the music-analytic data.

4.3 Segmentation

Musical segmentation is a common goal in music-cognitive theory and simulation (e.g., Lerdahl and
Jackendoff, 1983; Cambouropoulos, 1996; Wiggins, 2007b). Our model can predict both large-scale
and small-scale boundaries in music; here we discuss just the larger scale structural boundaries in
detail—essentially, those which are not musically moot points—and attempt to refute the predictions
of our model by comparing them with those of two music analysts (York, 1981; Potter, 2000) and
the composer’s scores. However, it will become clear that many of the points identified in the de-
tailed analysis of Gradus, below, correspond broadly with change-points of different kinds in the
information-theoretic measures.

Our prediction of large-scale structure works by looking for relatively large, simultaneous, positive
change-points in the information content and entropy of the music. This is predicated on the notion of
closure as described by Narmour (1990) and others: as a section, phrase, or other structure draws to
an end, the music becomes less unexpected (i.e., information content decreases) and predictions that
can be made about it become more certain (i.e., entropy decreases). In contrast, when a new section
starts, there is little expectation (about its content), so information content rises; correspondingly it
becomes more difficult to predict the up-coming structure, so entropy increases as well.

When estimating the relative size of the predicted boundaries, there are three factors to consider,
which we explain here in terms of the graphs (Figures 8 and 12): first, the depth of the “valley” in the
graphs, whose minimum is at the predicted boundary, which indicates the magnitude of the change;
second, the gradient of the graphs immediately following the change, which must be large; and, third,
the length of the rising edge, since a long rising edge denotes a sustained (i.e., not temporary) change.

4.4 Minimalist Music

There are three reasons for choosing minimalist music for this research: one, simply, is that there is
relatively little analysis of minimalist music in the literature, and so a useful contribution can be made
directly by supplying some: indeed, this is the first published detailed analysis of Gradus; another
arises from Bernard’s (1996) point about the nature of minimalist analysis, to which we refer above:
if there is no deep structure in minimalist music, the question is “what makes it music?”—perhaps
a cognitive modelling approach can answer this, since public response suggests that it does indeed
constitute “music” for many listeners. Finally, minimalist music, due to its very nature, reduces
the possible sources of musical variation, allowing for a tightly controlled study without sacrificing
ecological validity by using artificial stimuli, as often happens in studies of music perception.

5 Philip Glass’ Gradus

5.1 Introduction

Our first case study is Philip Glass’ Gradus (1968). Gradus was written for the saxphonist Jon Gibson
(and is sometimes referred to under the title for Jon Gibson in consequence). It is monodic and
isochronous, though it does include rests, presumably partly because a saxophonist needs to breathe.
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Figure 2: Incipit of Gradus (Glass, 1968)
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Figure 3: Bars 41–42 of Gradus, showing the boundary change from strong scalic structure to a new
configuration.

The piece, while clearly minimalist, and clearly in the style of its composer, is not, like most of
his music of the late 1960s and early 1970s, systematic (Potter, 2000, page 280); an incipit excerpt is
given in Figure 2. The piece is readily amenable to many extant computational techniques for analysis,
which we defer for future work; instead, we focus first on a detailed tonal analysis of the piece (which,
broadly, may be heard as an extended perfect cadence), by our human expert musicologist. In this
analysis, we mark references to bar numbers identified as points of significance by our model with
square brackets, like this: [45]. These points are then marked in the same notation in Figures 8 and 9,
and we explain the figures in the subsequent subsection. We emphasise that these markings are added
post hoc to an analysis produced independently from the model’s output.

5.2 Analysis by Human Musician

5.2.1 Part I

The initial pitch-class gamut of Gradus consists of just four pitch classes—A, B, D and E—with A also
repeated an octave higher. This can be interpreted as close to a pentatonic scale (only F] is missing).
But the important thing is that this gamut of two whole tones separated by a minor third, while clearly
articulating a kind of “soft” modality, is largely dependent on its articulation—via melodic outline
and, in particular, via rhythm and phrasing—to achieve any recognisable pitch centre.

A is immediately prominent, being also the lowest and highest notes heard until a low G is intro-
duced in Bar [42] (Figure 3). Yet the dominance of A is, familiarly, often interpretable by the listener
as having a dominant quality relative to D. For example, the constantly repeated sub-unit, ABD (first
occurring as a separate sub-unit as early as Bar 1), is readily heard as v-vi-i in, or on, D.

D, supported and emphasised by its dominant, A, is thus already perceivable as the putative focus
of the work’s early stages, and arguably suggestive of the music’s ultimate goal. Yet the lack of any

5



65

! "" # # # # # # # # #
# # # # # # # # # # # # $ # # # # # # # # # $

66

! "" Part II

# # # # # # # # # # # # # # $ # # # # $ # # # # # # # # # # # #

Figure 4: Bars 65–66 of Gradus, showing the boundary between Parts I and II.

semitones at all in the work’s first twenty bars renders any such modal focus ambiguous and somewhat
provisional.

The introduction of C], providing a (semitonal) leading note to the tonic of D, only occurs, as
suggested above, in Bar [21]. Before that, the original four-pitch gamut is expanded to five pitches
by the addition of G in Bar [4]. This new pitch is readily incorporated into the “early stages” of
attempting to identify Gradus’s material, pitch operation and process: modally, G is, of course, iv of
D, thus enhancing both the dominant quality of A and the tonicisation of E.

It is worth drawing attention here to the general matter of how the unfolding articulation of pitches
and rhythms in Gradus contributes to the listener’s sense of modal or tonal focus. To give just a single
example: once the pitch G is added, it is used to articulate a potential “dominant 7th” quality to the
modal mix around D. A good example would be in Bars [6 and 7], in which can be noted the gradual
detachment of G from its initial function as merely part of the rising sequence from A to A, towards
a first exploration of the role of G in arpeggiated sequences emphasising A, E and G. If it is D, and
not yet C], that here helps fill out these further forays into the area of arpeggiation as opposed to
scale patterns (the suggestion of arpeggiation had arguably begun as early as Bar 2), then that only
draws attention to the subtlety with which the move towards greater modal/tonal clarity is achieved
in Gradus. The contractions to just a few pitches (for example, the abandonment of G, and high A,
in Bars [9 and 10], to focus on the lower notes in the gamut, occasionally right down to AB alone)
should also, however, be noted.

C] is eventually reached, as indicated above, in Bar [21]. Its potential leading-note status is imme-
diately emphasised by the incorporation of C] into rising patterns that emerge as a natural consequence
not only of the general trend but also of the preceding Bar [20]. As with AB earlier on, C]Ds quickly
detached from time to time from the broader upward movement surrounding it. And the feeling of a
first-inversion dominant-seventh chord on A is already quite strong in Bars [21–23].

Since the basic building blocks of Gradus are now firmly in place, and no further new pitch class
is introduced until the F] which announces the arrival of Part II of the work (Bar [66]), let us make a
few observations on two matters which seem significant here.

Firstly, the gradual expansion of pitch register. With six pitch classes (ABC]DEG) now in play,
attention focuses on the way in which registral expansion builds on the gamut, C]–A, the focus of
Bars [21 and 22]: first re-establishing the full octave, A–A, then expanding outwards from this in both
directions. There is in fact quite soon an expansion downwards to B (in Bar 23), then to the original
low A (Bar [26]); though one short passage (the second half of Bar [33] and the whole of Bar 34)
reverts to B. The original A–A register is emphasised by the way in which, for the first time in the
piece, more than a single quaver rest is inserted within an individual pattern.

Further ways in which rhythm helps articulate and mould the listener’s approach to pitch focus
include the tendency to introduce more than one rest in a pattern. This begins to manifest itself in Bar
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Figure 5: Bars 34–35 of Gradus, showing a change from scalic to more fragmented structure.

[28]; one shouldn’t, though, make too much of it here, on account of the fact that it has been difficult
from the piece’s outset to distinguish clearly between patterns as indicated in the notation.

Yet the fragmentation at which it hints is then taken much further from Bars [35-37], where rests
intervene further to break up the line (Figure 5). Though longer sequences soon disrupt this tendency,
the effect is clear. The dominance of simple rising patterns, without descending detours, from near
the start of Bar [31], is further emphasised by such fragmentation. So is their assertion of A7, itself
also increased by the way in these rising patterns flip back from high G to low A. Such deployment
of rests can also, perhaps paradoxically, help to make the patterns sound at all regular. When they do
this, as for instance in Bars 35–37, they actually make the flow of the music easier to digest and recall.

The first move outside the A–A frame occurs with the descent to low G at the start of Bar [42].
The registral frame now shrinks for a while to G–E, and the consequence is to increase the tension
but, if anything, to assert A7 still more firmly. Yet the anticipated descent from iv to iii in D is delayed
all the way to the beginning of Part II. Before this, upward registral expansion occur (progressively
via E, G and A to the new note B at Bar 60), as well as several examples of contraction supplying at
least a local level of tension. In the course of this, A7 achieves a rare moment of unadultered focus
via fourteen consecutive notes in Bar [47].

With the return of high A, in particular (most prominently from Bar [50]), high Gs and As become
audibly detachable from the melodic line, as they are subject to a modest degree of repetition. More
obvious, partly due to being more prolonged, is the contraction of register from Bar [53] onwards,
continuing the suggestion of iv–i in D.

The registral expansion upwards is swift, however: firstly to E (end of Bar [53]), then all the way
to A (towards the end of Bar [56]). In Bar [58], expansion downwards to G once more sees a low G
to high A range with the now characteristic GA emphasis on top, with a brief shrinkage down to G–D
at the end of Bar [59], before the next expansion upwards, to B. With GAB sequences now prominent
at the top of the registral span of a major tenth, the descent to F] in Part II is prepared with something
of a flourish.

5.2.2 Part II

Part II is close to just one third the length of the whole piece. It continues the basic strategies already
described for Part I, extending the pitch range further to achieve a total span of a perfect twelfth (low
F]–high C]); but also introducing a new strategy, that of consecutive repeated notes on the same pitch,
which will ultimately unravel the previous scalic-based strategies and conclude the piece. Further
advantage is also taken of the ambiguities inherent in the pitch gamut deployed in Gradus to tease
the listener with the possibility of a tonal resolution that is only, ultimately, half-delivered: via its
dominant, the favoured modal strategy of Gradus as a whole.
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Figure 6: Bars 82–83 of Gradus, showing the third large boundary change from scalic to more frag-
mented structure.

Having accomplished the descent to low F], Part II initially contracts to spans of no more than a
major sixth for any individual pattern, with the highest note for Bars [66]–67 being E, and for Bars
[68]–[70], D. Perfect fifths and perfect fourths are, indeed, much more common than sixths, and soon,
at Bar [68], the span shrinks to a perfect fourth (F]–B). The effect of these shorter scalic patterns,
contrary to the effect achieved by the gapped pentatonic scale of the work’s opening, is to focus more
clearly on particular pitch centres, especially the D major that had been the more implicit modality of
Part I.

But Part II indulges in no simple and explicit insistence on, or final celebration of, D major as the
tonic key. Or at least not without teasing the listener along the way. When the focus shifts to G, for
example, the largely triadic Bars [69-75] prolong this territory for a length of time that is surprising
and disruptive in this context. The high A that is inserted into the G]7 iterations (G major plus its
leading note) from the end of Bar 74 [74-75] only lead to a return of scalic patterns at Bar [76], where
it is the reoccurrence of C] that causes the move back to an D major emphasis. The return of high B
in Bar [78] not only continues the gradual extension upwards of the scalic patterns brought back with
the previous rearrival of A, but a progression of the highest note in Part II from C] and D (Bar [66]), E
(Bar 67), and, in particular, G (Bar [71], via the G major triads, not the scalic patterns [71-74]). And
while D major is rearticulated with abundant clarity at the start of Bar [83], following the increasing
(and actually quite systematic) unravelling of low F] to either high A or high B patterns over the
course of Bars [78-82] (Figure 6), a G-major flavour insinuates itself almost immediately (the GAB
sequences in Bars [83-85] are offered in both the lower and high octaves, playing iv–v–vi in D major
but appearing sufficiently often, and in sufficiently fragmented form, to draw attention to themselves
in their own right, as it were).

With the final extension to high C] from Bar [87], the range now reaches its maximum size, a
F]-C] perfect twelfth. Its full articulation proves sufficiently long to require the spilling out of the
32-quaver bar lengths over into successive bars, as it expands. (Such “spillage” had already occurred
as early as Bar [69], in Part I.) The more continuous quaver movement combines with the fact that
almost all patterns not commencing on low F] start on C] to reinforce F] and A as possible alternative
focal pitches to D, even as F] and A could be argued to reinforce its centrality triadically.

Before the arrival of repeated notes on the same pitch, D major makes a clear return to unam-
biguous focus (in Bar [92]), via a clutch of leading-note/dominant [seventh] emphases homing in
progressively on the tonic. High G and A are the only two pitches to “silt up” through immediate
repetition (Bar [94]; Figure 7); the context in which this is initially done instantly suggests iv–v in
D major. The gradual process whereby such repetition spreads out, like a virus, eventually to take
over the final five bars of Gradus entirely, is an interesting one which should be explored on rhythmic
and systematic levels as well as the tonal/modal one. Suffice it to say here that the earlier tendency
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Figure 7: Bars 93–95 of Gradus, showing the full range of the piece, and the boundary (in the middle
of Bar [94]) to the “coda”.

towards low C] as the main alternative to low F] as the starting point for the rising sequences is now
embraced enthusiastically and comprehensively from Bar 90 onwards.

5.2.3 Conclusions of the Tonal Analysis

The overall progression of Gradus can be described as a move from the initial four pitch classes,
ABDE, quickly to five pitch classes (+ G, from Bar [4]), and then, at a more leisurely pace, to six (+
C], initially from Bar [21]), and finally seven (+ F], from the beginning of Part II at Bar [66]). This
moves from an ambiguous, basically pentatonic, scale, ABDEG, to a seven-note diatonic sequence,
F]GABC]DE, that most readily, in actual articulation, suggests a D major scale.

This progression is, however, complicated by a number of factors in addition to the changing
extent of registral repetition of pitch classes. The most important is the way in which contraction
as well as expansion of both the number of pitch classes in play and the overall number of different
notes, permit local explorations of different parts of the total gamut. For example, C] first appears in
Bar [21] as part of a five-pitch gamut rather different from that of the piece’s opening (C]DEGA), and
only from Bar [23] as part of the six-pitch gamut, BC]DEGA.

It is partly via this means that Glass plays with the listener’s expectations as far as pitch centres
are concerned. Such toying with the listener’s attempts to make sense of Gradusṕitch progressions
also includes the tantalising deployment of the repeated notes by which its final pages are increasingly
dominated.

Resolving firmly onto D itself would arguably have been crass in a modal context such as the one
Gradus creates. Yet the expansion of the pitch range upwards to C] and downwards to F] implies a
final resolution on D that is never in fact delivered. The only two pitches selected for repeated treat-
ment, G and A, offer iv and v in D major, but not the tonic of D itself. Coming as it does at the work’s
end, this gambit is perhaps the most telling as well as most extended example of Glass’ rather subtle
engagement of the interface between a modality sufficiently ambiguous to allow constantly shifting
pitch perspectives, and one rooted in a familiar diatonic scale sufficiently inflected by repetition on a
variety of levels to insinuate the more focused perspective suggested by invoking the term tonality.
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5.3 Information Dynamics of Gradus

Now we discuss the information dynamics of our model, as it simulates listening to Gradus in the
context of the above analysis. First, we consider the outputs of our Short-Term Memory (STM) model,
shown in Figure 8. Using the STM alone, the best-performing feature set (see “Feature Selection”,
above) contained Interval ⊗ Rest, Pitch, Interval, Pitch ⊗ Rest and Interval ⊗
ScaleDegree, yielding a mean information content of 1.56 bits per event. Recall that this model is
untrained, and therefore contains only knowledge of local structure in the piece, learned dynamically
as the music proceeds. This knowledge is expressed in terms of the selected features. Selection of
these viewpoints suggests that tonal function (which intervals, and where in the scale) is important as
well as the articulation implied by the presence of the rests in the piece.

The figure shows both our measures: the solid line is entropy; the dotted line is information
content. The vertical rules drawn at regular intervals along the graph denote “bar” lines in the score;
the x-axis is time expressed in quavers.

To read the graph, it is important to understand that both measures are smoothed with a sliding
window, 64 events (2 bars) wide—otherwise the local jaggedness of the graph would make the effects
we are studying very hard to see. Therefore, a sharp change in gradient of the graph denotes a step
change in the local mean value of the data, and we focus on the temporal location of these change
points: we wish to explore correlation between them and our independent analysis.

Globally, the STM information content is generally lower than the entropy, which means that the
model is doing relatively well at predicting what comes next at each stage. This gives us a measure of
the internal coherence of the piece: there is some coherence, but nothing like the systematic coherence
of Two Pages (see below).

The LTM model, shown in Figure 9, on the other hand, does relatively poorly at predicting: 3.34
bits per event, and information content is consistently higher than entropy. Automatic feature selection
for the LTM yields poorer prediction performance than the STM using a best-performing feature set
consisting of ScaleDegree⊗ Rest, Interval⊗ ScaleDegree, ScaleDegree and Pitch
⊗ Rest.

Apart from the features in common between the two optimal feature sets, the set selected for
the STM exhibits a greater emphasis on local melodic structure (Interval, Interval ⊗ Rest),
while that selected for the LTM shows a tendency towards tonal-melodic structure (ScaleDegree,
ScaleDegree ⊗ Rest).

Notwithstanding the relatively poor prediction, there are still interesting change-points in the LTM
model, and these are marked, in the same way as before, in Figure 9. A particular area of interest
here is the relatively low information content in Bars 33–42 and Bars 57–68. The first of these is a
combination of two effects: in [35-38] the frequency of rests increases dramatically, so the rather non-
melodic, arpeggiated quality of the piece breaks down; in the bars before and after, on the other hand,
there is strongly scalic writing. The second, 57–68 is an area of purely scalic writing, which gives
rise to much higher predictability, though still being not conventionally melodic. Finally, note how
the very extended scalic sections, [42-46] and [59-66], dramatically decrease the information content
of the notes: we argue below that contributes to the feeling of musical closure at these points.

Between the two graphs, it is possible to isolate change points which correspond with all of the
significant points in our expert analysis above, and it is appropriate at this point to recall that this
analysis was produced independently from the graphs. The fact that not all of the points of interest
are visible in the output of both models underlines the need for a dynamic system here: not only do
the feature selectors of each model need to be dynamic (as they are) but also the combination of the
two models, if the system is to help in producing analyses such as this.
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Figure 8: The STM Event-wise Information Content and Prediction Entropy of Gradus. Vertical lines
mark boundaries between bars.
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Figure 9: The LTM Event-wise Information Content and Prediction Entropy of Gradus. Vertical lines
mark boundaries between bars.
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Nevertheless, we suggest that the outputs presented here demonstrate that our model has clear
potential not only to be used as a musicological tool but also to serve as a concrete, quantifiable
link between musicological analysis and music cognition. We present further evidence for this claim
below.

5.4 Segmentation

In the score of Gradus, Glass marks only one boundary: that between Part I and Part II. However, there
are, in fact, three clear, large-scale boundaries in the piece, arising in the music from the division of
the piece into four sections, each of which is a transformation of more arpeggiated passages like that
at the start of the piece (Figure 2) into extended scalic passages (Figure 3), the last having a sort of
coda of repeated notes.

The largest such boundary is predicted at Bar [42], which is the first time this kind of change has
been encountered (Figures 3 and 8). Note that both entropy and particularly information content have
decreased significantly over the preceding bars, and that the increase in both happens precisely on the
first event of Bar 42.

The second large boundary is predicted at Bar [66], also marked by the composer as the start of
Part II. It is marked in Figure 8 and 4. This boundary is structurally very similar to that at Bar [42];
for this reason, i.e., because many of the structures are shared, the relative changes associated with
closure and the start of a new section are less pronounced, though they are still uncontrovertible in the
graph.

The third large boundary is predicted at Bar [83], which point is again between some of the scalic
passages to which Gradus’ sections tend and new, more arpeggiated material (Figure 6).

We must now explain, therefore, why are we not predicting large boundaries at, for example, Bars
[58], [87] or [94]. At Bar [58], the “valley” in information content is not matched by one in entropy.
Therefore, closure as we model it above has not been achieved, so this is not a candidate boundary.
At Bars [87] and [94], the “valleys” are quantifiably smaller than at our proposed boundary points,
but also the gradients of the graphs to the right of the minima are substantially (about a factor of 2)
smaller, and, by a similar factor, less sustained.

As a final piece of evidence for our “closure” interpretation, note how both measures significantly
decrease towards the end of the piece.

We suggest that this discussion demonstrates that our model is capable of finding large-scale
boundary points in Gradus. However, this might still be an ad hoc result, arising from relationships
between our model and the structure of this particular piece. Next, we generalise the result to another
work, whose structure is musically quite different, to refute this possibility.

6 Philip Glass’ Two Pages

6.1 Introduction

Two Pages, written only a year after Gradus, is a very different piece of music. An incipit excerpt is
given in Figure 10. The two pieces share significant surface properties—they are both isochronous,
monodic and clearly minimalist—and deeper musical properties—in particular, subtle tonal/modal
manipulation (Potter, 2000); but Two Pages is strictly systematic. Its system is explicit in the score,
either as repetitions of given figures (see Figure 10), or as specifications of figures which change in
time (see Figure 11).
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Figure 11: The specification of a changing figure from Two Pages (Glass, 1969)

Although the scalic sequences of Two Pages do convey tonal implications, the behaviour of our
LTM model in the piece is much less interesting that that of the STM model, because Two Pages is
even less traditionally tonally-melodic than Gradus. We focus here on the STM only. For evaluation,
we need a structural standard with which to compare, and we have three: one by the composer, in the
form of (musical) figure and section boundaries and others by York (1981) and Potter (2000). We now
consider the information dynamics of the combined learning model as it simulates listening to Two
Pages in terms of these structural boundaries and of the (musical) figures in the piece.

6.2 Information Dynamics

The best-performing feature set for the STM in Two Pages contained only the feature Interval
⊗ ScaleDegree, indicating that tonal function is very important in the piece. The selection of
just one feature, compared with five in the Gradus study, is probably a result of Glass’s insistence
on exploring the additive processes in this composition using an unrelentingly minimal structure set.
The mean information content obtained using this feature, 0.36 bits per event, is much lower than that
obtained for Gradus, reflecting both the more constrained materials (5 distinct pitches and 10 distinct
intervals as opposed to 11 and 32 respectively in Gradus) and the more strictly repetitive structure
of the piece. So, as we predict above, in these pieces, mean information content does decrease with
increasingly systematic composition.

Figure 12 shows event-wise information content and entropy of the STM while simulating listen-
ing to Two Pages; Figure 13 shows the corresponding LTM output. As before, the graph is smoothed
with a sliding window to assist visualisation; the same artefacts arise and are significant here: a sharp
change in graph gradient denotes a step change in local data, and we are interested in the times of
these change points.

The vertical lines, as before, denote the boundaries between the musical figures of which the piece
is constructed. In Gradus, these were all of the same length (32 quavers); in Two Pages, they are of
variable lengths, so in the graph the x-distance between the lines varies. The bolder vertical lines
denote the Part boundaries as annotated in the score by the composer; their numbers are shown on the
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Figure 12: The Event-wise STM Information Content and Prediction Entropy of Two Pages. Vertical
lines mark boundaries between musical figures; bold vertical lines mark Part boundaries as annotated
by composer.
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Figure 13: The Event-wise LTM Information Content and Prediction Entropy of Two Pages. Vertical
lines mark boundaries between musical figures; bold vertical lines mark Part boundaries as annotated
by composer.
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Figure 14: The transition to Part IV of Two Pages.

graph. The smoothing window is 64 quavers wide, as in the Gradus graphs.
Globally, we immediately see that the vast majority of figure boundaries coincide with a change in

direction of both of our measures. Because of the nature of the music, we would expect the measures
trivially to coincide with change, but not necessarily a large change each time; so there seems to
be a suggestion that something information-theoretically (and therefore musically) stronger than just
arbitrary addition of symbols is happening here. But what is more striking from the graph, and rather
harder to explain in musical terms, is the very large increase in both measures at the start of each of the
composer’s marked Parts (with the exception of Part 4, where there is a delay of one figure; we return
to this below). These changes are hard to explain because the changes in the music that produce them
are apparently very small, and not apparently very different in kind from the changes that take place
at the other weaker boundaries in the piece; in both information-theoretic and music-analytic terms,
however, they are very significant. This suggests that our model is accurately predicting (using exactly
the same rules as for Gradus) the segmentation proposed by both the composer and two analysts for
four out of five part boundaries (I–III, V), and suggests interesting future detailed work on the nature
of these changes and what musical effects they have.

The Part 4 boundary requires further consideration, because the large detected change, which, we
claim, marks this Part boundary is apparently one figure late, according to the composer’s marking.
To understand why this is, we need to resort to the score fragment shown in Figure 14.

The figure shows the alternatives for the start of Part IV, marked (a) and (b). In Potter’s (2000)
analysis, which was made from the manuscript score of the composer, the Part IV boundary at (a)
is assumed to be a priori given; indeed, in that score, Glass goes into uncharacteristic detail about
the compositional method, marking some of the notes as a “tag”, which seems to mean the marker
at the end of a repeated sequence. However, comparison with the preceding (musical) figure, shown
in Figure 14, demonstrates that, notwithstanding the means of construction, point (a) is in fact in
the middle of another figure which is structurally congruent—the only difference is the number of
repetitions. Furthermore, point (b) marks the beginning of a (musical) figure which is substantively
different from the two preceding ones. This, we argue, is the perceptual Part IV, rather than the
annotated compositional one at point (a).

Support for our claim comes from York’s (1981) analysis of Two Pages which was made from the
analyst’s own transcription of an audio recording, and without sight of Glass’ manuscript score. York
analyses the piece in the same way as our system, placing the Part boundary at point (b) in Figure 14,
and viewing the two (musical) figures immediately before point (b) as different parameterisations of
the same structure. In this way, we suggest, our system (along with York) has more accurately captured
the music as heard than the alternative analysis based on (or perhaps obscured by) the inaudible
compositional method; we might even suggest, on the basis of Bernard’s (1996) description of the
minimalist aesthetic (see “Introduction”), that its section marking is more “correct” than that of the
composer.
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7 Summary and Conclusions

We have presented evidence for a relationship between two objective measures of the information dy-
namics of musical works, as heard by a simulated listener, and points of varying structural importance
in the music as analysed by expert human analysts. We have identified various ways in which such a
relationship might be refuted, and failed to do so.

We have given a novel, detailed analysis of one piece, and shown how it corresponds with the
information dynamics of the music as heard, and we have shown that this connection generalises,
at least to music in a similar style by the same composer. We will attempt to demonstrate further
generalisation elsewhere.

In taking this approach, we have demonstrated a promising methodology for the computational
and cognitive study of music: rather than taking musical stimuli and artificially simplifying them to
make their study tractable, we have sought and found music which is amenable to the kind of treatment
of which our system is capable, thus enabling a more ecologically valid approach, and, therefore, in
principle, more ecologically valid results. However, more work is needed before this latter claim can
be justified in practice.

At a more general level, we suggest that this research provides further evidence that dynamic
information-theoretic modelling of musical listening is a worthwhile approach to the study of music
cognition and also has the potential to be a powerful tool to increase objectivity in data-based music
analysis. Our immediate future work will seek to refine the current models with further data, to extend
our coverage to more minimalist and other music, and to study the relationship between the predictions
of our model and human brain function.
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