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Abstract

SIATEC is an algorithm for discovering patterns in multidimensional datasets (Meredith et al., 2002).
This algorithm has been shown to be particularly useful for analysing musical works. However, in raw
form, the results generated by SIATEC are large and difficult to interpret. We propose an approach,
based on the generation of set-covers, which aims to identify particularly salient patterns that may be of
musicological interest. Our method is capable of identifying principal musical themes in Bach Two-Part
Inventions, and is able to offer a human analyst interesting insight into the structure of a musical work.

1 Introduction
This paper attempts to identify the repetition of perceptually salient patterns in symbolically represented
music. A geometrical approach is adopted in which pieces of music are represented as multidimensional
datasets. Following the work of Meredith et al. (2002, 2003) and Meredith (2006), we have implemented
SIATEC, a pattern induction algorithm, and have conducted a series of use-case studies in order to in-
vestigate the properties of the generated results in terms of musicological value and perceptual salience.
SIATEC is known to discover many more patterns than are typically of interest in any music analysis
context, and the results can be difficult to interpret (Meredith et al., 2002, p. 340). We propose a post-
processing step, similar in character to the NP-hard minimum weighted set cover problem (Karp, 1972), in
which various heuristics can be employed in order to optimise the results in terms of specific music-analytic
objectives.

Viewing this problem in the light of theoretical computer science is beneficial on several counts. Firstly,
the knowledge that an exact solution cannot be computed in polynomial time assures us that we need to
seek approximate solutions. Secondly, a great deal of research has been conducted in trying to establish
methods for deriving solutions within acceptable bounds of approximation. The standpoint of computer
science informs understanding of the nature of this problem, and provides examples of rigorously tested
methods that may be applicable to our case. The inherent level of ambiguity in set-covering problems
accords with the common situation in musical analysis whereby different interpretations of a work may be
considered equally valid and correct. In order for an analyst to reach any firm conclusion, compromises
must be made, which are often informed by conventions (heuristics) of music theory.

An applied aim of this research is to develop tools suitable for various music-analytic tasks. Within the
field of musicology such tools may assist conventional score analysis, and may prove particularly useful for
larger-scale corpus analysis. The latter overlaps with interests of music information retrieval, where such
techniques may be applied in order to extract commonly occurring patterns as the basis for classification.
A composer may also be able to gain inspiration by analysing a work in progress and arriving at a fresh
perspective. More novel applications may be found in music psychology or artificial intelligence, where
large collections of music could be analysed in order to derive data for training or testing models of musical
behaviour. The work discussed in this paper has been conducted within a larger project investigating
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musical creativity. This wider project requires a considerable body of musical knowledge with which to
train artificial musical agents in an attempt to simulate aspects of creative musical behaviour. In order
to justify claims of potential utility, tools for automated musical analysis must be adaptable to individual
tasks, which may involve handling varying degrees of ambiguity, and necessarily must scale to real-world
musical problems.

2 Previous Work
The concept of a musical pattern entails repetition. The definition of SIATEC ensures the enumeration of
all maximal repeated patterns (Meredith et al., 2002, pp. 331–333). A large number of these discovered
patterns will usually prove to be of little interest from a musical or perceptual perspective, and this is one
problem our heuristics must address. Yet a more complicated issue concerns the many types of salient
repetitive patterns that may exist in a musical work. In other words, the kinds of patterns that are likely to
be of interest, and the ways in which they are interesting, may vary considerably.

There is agreement amongst both musicologists and music psychologists as to the importance of rep-
etition in music (see, for example, Lerdahl & Jackendoff, 1983; Nattiez, 1987; Krumhansl, 1997). One
cross-cultural study based on fifty musical works found that 94 percent of all musical passages longer than
a few seconds in duration were repeated at some point in the work (Huron, 2006, pp. 228–9). However,
this result does not account for the role of repetition in music in its entirety, because repetition may exist
in many forms beyond the exact repetition of musical events in sequence. For example, melodies may still
be perceived as instances of the same basic melodic motif despite being transposed in pitch or transformed
in time. Indeed, perceptual similarity may pertain for any individual listener under an arbitrary number of
processes of elaboration and transformation. In the context of computational analysis, therefore, careful
consideration must be given to the notion of pattern equality.

Much previous work in this area has concentrated on techniques for string matching. Despite successes
within certain specialised tasks, notably concerning monophonic melodies, various limitations of string
methods become apparent in the context of music (Lemström & Pienimäki, 2007).

An alternative approach to string matching exists in the form of geometrically-based algorithms. Within
a geometrical framework, the individual note events of a piece of music correspond to single points in a
multidimensional space.1 A family of algorithms related to SIA (Structure Induction Algorithm) have
been developed for pattern discovery and matching in multidimensional datasets (Meredith et al., 2002;
Wiggins et al., 2002; Meredith et al., 2003; Meredith, 2006). The initial development of these techniques
was motivated to a large extent for application to music, but are equally applicable in other domains where
objects may be adequately represented in a multidimensional space.

Following Meredith et al. (2002, p. 328), we define a datapoint as a k-tuple of real numbers, and a
pattern P or dataset D as a finite set of k-dimensional datapoints. We reserve the term dataset to refer to
a complete set of datapoints we wish to process, for example, a piece of music, while pattern refers to a
subset of the dataset. A translator is a vector that maps from one instance of a pattern to another within a
dataset. More precisely, a vector t is a translator for P in D if and only if the translation of P by t is also
a subset of D.

The basic SIA algorithm computes all the maximal repeated patterns in a dataset (Meredith et al.,
2002, pp. 334–5). The algorithm finds the largest non-empty set of translatable datapoints for every pos-
itive translation possible within the dataset. Hence, each pattern discovered by SIA is called a maximal
translatable pattern (MTP). The worst case running time of SIA is O(kn2log2n).

An important extension to SIA is SIATEC (Meredith et al., 2002, pp. 335–8). SIATEC underlies both
the approach to pattern discovery adopted in the present paper, as well as the closely related COSIATEC
algorithm, which will be discussed below. Like SIA, the SIATEC algorithm enumerates all the maximal
translatable patterns in a dataset, but also groups them into equivalence classes. A translational equivalence
class (TEC) is represented as an ordered pair 〈P , T (P , D)〉, where P is a maximally translatable pattern,
and T (P , D) is the set of translators for P in the dataset D. The worst-case running time of SIATEC is
O(kn3).

1A variation on this approach, based on sets of line segments in space, is discussed in Ukkonen et al. (2003)
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Composition Number of datapoints Number of TECs
BWV 772 458 9035
BWV 773 634 11724
BWV 774 494 9882
BWV 775 443 9304
BWV 776 733 15978
BWV 777 547 17209
BWV 778 473 11103
BWV 779 598 11731
BWV 780 558 11995
BWV 781 439 9038
BWV 782 568 11306
BWV 783 685 15969
BWV 784 564 12250
BWV 785 592 16782
BWV 786 477 10407

Table 1: Number of datapoints (notes) and the number of discovered TECs in J. S. Bach’s Two-Part Inven-
tions

Even for small datasets, the raw output of SIATEC can quickly become unmanageably large, as can be
seen in Table 1. Furthermore, the patterns are diverse in size and structure, and on the whole are not readily
intuitive. It would be straightforward to rank the discovered patterns based on a set of criteria; for example,
to sort by pattern size |P |, or the number of pattern repetitions |T (P , D)|. However, such a simplistic
approach presents two particular difficulties. Firstly, the method does not lend itself to any principled
means of deciding how many of the most highly ranked patterns should be selected as being representative
of the repetition in the dataset. Secondly, this method would preclude the ability to make inter-pattern
judgments, that is, for the value of one pattern to influence the value of another, due to combinatorial
explosion.

COSIATEC is one method for automatically identifying a subset of ‘interesting’ patterns from amongst
the many patterns discovered by SIATEC (Meredith et al., 2003; Meredith, 2006). COSIATEC is designed
to generate compressed representations of datasets by representing them in terms of highly repetitious
subsets. The algorithm first runs SIATEC, generating a list of 〈P , T (P , D)〉 pairs, and then selects the
best pattern based on heuristics. The algorithm then removes from the original dataset all the datapoints
that are members of the occurrences of the chosen pattern P . The process continues until all the datapoints
have been removed from the dataset. The resulting set of patterns are collectively termed a cover (Wiggins
et al., 2002). In this case, each datapoint is represented in a cover exactly once.

For each iteration of COSIATEC, the remaining patterns are evaluated according to the three heuristics
of coverage, compression ratio, and compactness, and the most highly valued pattern is selected to become
part of the resulting cover. These heuristics are also employed in the present work, and are defined below.

Although motivated by compression, COSIATEC has been shown to identify principal musical themes
in pieces of music (Meredith et al., 2003; Meredith, 2006). This is explicable given the very nature of
a musical theme, which will typically appear numerous times during a work, making it an ideal pattern
for use in the encoding of a compressed representation. Therefore, COSIATEC offers a tidy solution to
the difficulties of sifting through the output of SIATEC. The problem becomes one of generating optimal
(finite) covers given particular heuristics. Furthermore, being a greedy algorithm, the generation of covers
entails a degree of pattern co-dependency, since previously selected patterns will affect the outcome of later
iterations.
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3 An Alternative Selection Algorithm
The approach to pattern discovery in the present work follows a similar strategy to that of COSIATEC. We
again formulate the problem as one of cover generation, but explore possibilities created by shifting the
emphasis away from purely optimising compression. The foremost difference in this approach is that we
only apply SIATEC once—to initially process the entire dataset. Furthermore, we evaluate only once the
musicological value of each pattern discovered by SIATEC. Therefore, the musicological value of each
pattern is determined within the same initial context, prior to selection. The rational being that, compared
with COSIATEC, the selection process in this case more closely relates to the process of musical listening,
since listeners perceive patterns in a musical work in the context of all the notes. The resulting values,
or weightings, are adjusted during subsequent iterations of the selection process, but only by the single
varying factor of the number of currently uncovered datapoints that are covered by a particular pattern.
This process is described below as an example of a weighted set-cover problem.

Also explored is the effect of loosening the constraint requiring that each datapoint only be covered
once. This enables us to consider datapoints as belonging to multiple patterns within a single cover, cre-
ating the potential to infer structural relationships between repeated elements. A similar strategy could be
pursued within COSIATEC, but only within the context of each iteration as covered datapoints are removed
at each stage.

3.1 Generating Set Covers
The approach taken in this paper for generating covers from musical patterns discovered by SIATEC can be
described in terms of the widely known NP-hard set-covering problem. Cormen et al. (2001, pp. 1033–4)
describe this problem:

An instance (X,F) of the set-covering problem consists of a finite set X and a family F of
subsets of X , such that every element of X belongs to at least one subset in F :

X =
⋃

S∈F
S. (1)

We say that a subset S ∈ F covers its elements. The problem is to find a minimum-size subset
C ⊆ F whose members cover all of X .

X =
⋃
S∈C

S. (2)

In other words, the desired outcome of this optimisation problem is to find the smallest number of subsets
in F that account for (cover) each element in X at least once.

The standard approach to set-cover utilises a greedy algorithm based on the heuristic of selecting at
each stage the set S that covers the largest number of uncovered elements in X . Ties are broken randomly.
This algorithm is the best known performing algorithm, achieving an approximation ratio of (1−o(1)) lnn
(Feige, 1998, p. 634).

In the context of SIATEC, X is equivalent to a dataset D. Similarly to the selection process of
COSIATEC, we consider all instances of a pattern P in a dataset D as constituting a single subset of
D. We use PTEC in order to explicitly refer to a subset of D that is the union of each occurrence of P in D.
Therefore, each subset S ∈ F is a PTEC, and F is equivalent to the entire set of patterns (considering each
as a PTEC) discovered by SIATEC: F = 〈PTEC0, PTEC1, . . . , PTECn−1〉.

For our purpose, simply finding a minimum-sized subset C ⊆ F does not adequately characterise
the problem, since we require a means of specifying which patterns should be considered ‘better’ or
‘worse’ by the selection algorithm. Therefore, a more appropriate model for the problem is the equally
well-known generalisation of the minimal set-cover problem: the minimum weighted set-cover problem
(Chvatal, 1979). Typically, a greedy algorithm is also adopted, except that covers are selected in the order
that minimises the ratio of cover weight to number of elements covered.
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To place the SIATEC cover problem in this context, it is necessary to attach weighting values to each
of the discovered patterns in F . This step is similar to the use of heuristics in COSIATEC, except that in
this case the values are calculated only once, prior to the actual selection process. The higher a pattern
scores according to a heuristic, the more relevant it is considered to be to the analysis. The heuristics used
to calculate these values are discussed in the following section.

Contrary to the more typical formation of weighted set-cover problems, the selection process in this
case seeks to maximise: weight(PTEC) × cover-ratio(PTEC) where weight is the musicological value of
the pattern PTEC predetermined by a set of evaluation heuristics, and cover-ratio is the ratio between the
number of uncovered datapoints in the dataset D that are members of the pattern PTEC, to the total number
of uncovered datapoints in D. The definition of cover-ratio here is based on the concept of coverage used in
COSIATEC, which is defined as: ‘the number of datapoints in the dataset that are members of occurrences
of the pattern’ (Meredith et al., 2003, p. 7). A minimum cover-ratio threshold, which must be exceeded for
a pattern to become a member of the cover, has proved a useful parameter in the generation of set-covers. In
practice, a minimum cover-ratio threshold of between five percent and twenty percent is the typical useful
range. Higher values in this range are particularly useful in order to generate covers consisting of only a
small number of patterns. High cover-ratio values may lead to not every datapoint in D being represented
in the set-cover. However, this is not necessarily unsatisfactory, since not every single note in a piece of
music may prove sufficiently salient to be accounted for by a typical listener, or even professional analysts.

Once it has been determined that a pattern should become a member of the set-cover, a final step is
taken to determine whether a pattern should be considered a primary or secondary pattern. This step is
simply intended to make the generated results more comprehensible for the human analyst, by attempting
to group together ‘similar’ patterns. If a pattern is the first pattern to be selected, it is simply defined as
primary. Each subsequently selected pattern is compared to each existing primary pattern in terms of the
number of datapoints they commonly cover. This is in order to identify the primary pattern that is ‘most
similar’ to the newly selected pattern, quantified in terms of overlapping coverage. If the proportion of
commonly covered datapoints is greater than an arbitrarily defined threshold—50 percent in this case—
then the newly selected pattern is declared a secondary pattern, and grouped together with the most similar
primary pattern. If the newly selected pattern is not considered similar to any of the other primary patterns
it is declared a primary pattern. Whether a pattern is defined as primary or secondary has no bearing on
the actual selection process, it is purely a means of organising the selected patterns, as well as offering an
estimation of the number of distinct musical ideas present in the work.

4 Pattern Evaluation Heuristics
As noted above, there may be many different forms of repetition in a piece of music. It is therefore
necessary to establish an evaluation criterion in order to automate the extraction of the kinds of repetitions
that are considered relevant to an analytical objective. The cover-ratio heuristic, introduced in the previous
section, is one measure of a pattern’s value, and is recomputed for every pattern for each iteration of the
cover generation algorithm. Here we describe two further heuristics that are used to provide static, or
absolute, measures of the value of a pattern.

Compression ratio is defined as ‘the compression ratio that can be achieved by representing the set
of points covered by all occurrences of a pattern by specifying just one occurrence of the pattern together
with all the non-zero vectors by which the pattern is translatable within the dataset’ (Meredith, 2006, p. 13).
Compression ratio can, therefore, be calculated in terms of coverage:

compression ratio =
coverage

|P |+ |T (P,D)| − 1
(3)

Compression ratio is particularly useful for identifying large, non-overlapping patterns that have many
occurrences in a dataset.

The second heuristic used is compactness, which is defined as ‘the ratio of the number of points in the
pattern to the number of points in the region spanned by the pattern’ (Meredith, 2006, p. 13). This heuristic
applies to each occurrence of a pattern P belonging a TEC. Therefore, unlike compression-ratio which
generates a single value for a TEC, compactness produces |T (P , D)| values for each TEC. In order to
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arrive at a single value for a TEC, since the selection algorithm generates covers by selecting PTEC subsets
of D, the obvious approach is to use either the mean or maximum compactness value as the TEC weighting
value. From a musical perspective, selecting the maximum pattern compactness value to determine the
weighting of a TEC can be justified on the principle that a significant musical theme will typically have at
least one relatively prominent (compact) occurrence in a work.

As discussed in Meredith et al. (2003) and Meredith (2006), the definition of ‘region’, for example, as a
segment, bounding box, or convex hull, impacts on the computed compactness value. For our purposes, we
employ the notion of a region as a segment, but also take into account the musical voicing within a pattern.
Therefore, all the notes that occur inclusively between the first note onset of a pattern and the final offset
are considered to belong to the region (segment) spanned by the pattern. However, unlike previous work,
we calculate the ratio using only those notes in the region that are also members of the voices present in the
pattern. This decision is based on the assumption that notes belonging to the musical voices present in a
pattern are more likely to influence its perceptual salience, compared with notes belonging to other musical
voices. This assumption is consistent with empirical findings related to melodic streaming (Bregman, 1990,
pp. 61–64). The present definition of compactness, relying to a certain degree on specific musical concepts,
is less generic than the original geometrical definition. However, it has proved to be the most satisfactorily
performing variant in our study. Furthermore, given that our testing dataset consists of the fifteen J. S. Bach
Inventions, the strict two-part texture of the music gives additional credence to the utilisation of voicing
information in the selection process.

Patterns are initially assigned a default weight of one, and each heuristic is implemented such that it
returns a normalised weighting value of between zero and one. Weighting combination is multiplicative.
Therefore, if a pattern is rated most highly by each heuristic, it would retain the final value of one. If a
pattern scores zero for any of the heuristics the final rating would also be zero.

The values generated by heuristics can also be scaled in a variety of ways. Most relevant to the current
analysis is that values can be adjusted using either a linear or exponential mapping, and can also be given
explicit minimum and maximum thresholds beyond which patterns are assigned a weighting of zero. Set-
ting a threshold for a heuristic is particularly useful as a means of excluding a subset of patterns prior to the
cover generation process. The removal of redundant subsets S ∈ F is common in the literature (Caprara
et al., 1998, p. 2). The density of coverage present in F plays a significant role in determining the bounds
of approximation (Clarkson & Varadarajan, 2005), so from a practical standpoint, the prior reduction in the
size of a set cover instance may lead to improved solutions.

5 Results
We have applied the cover generation algorithm and heuristics discussed above to J. S. Bach’s Two-Part
Inventions (BWV 772–786). Each piece was analysed using a range of different parameters for each
heuristic. Individual pieces from this set: BWV 722, 724 and 725, are also the subject of analysis in
Meredith et al. (2003) and Meredith (2006). Therefore, we focus attention on these three pieces in order to
draw some comparison.

The covers generated by our system robustly included the same patterns as those discovered by
COSIATEC. A minor deviation from this is in BWV 775. COSIATEC selects the opening two bars as
constituting the most important pattern in work. Our system makes an almost identical selection, except
that it does not include the very first note. Both interpretations are valid when considering the full score.
There are indeed many occurrences of the pattern discovered by COSIATEC, however, there are also many
additional occurrences where the first note is different. The difference between the two results is presum-
ably a reflection of a different balance of emphasis given to the heuristics used to evaluate the patterns.

Figures 1 and 2 show a complete cover generated from BWV 772 using the following heuristic param-
eters:

• Cover-ratio (min: 0.2)

• Compression-ratio (min: 0.25, max 1.0)

• Compactness (min: 0.25, max 1.0)
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There are 9035 TECs discovered by SIATEC in BWV 772. After calculating the weights of each TEC
using compression-ratio and compactness, only 129 TECs have non-zero weights. This considerable re-
duction indicates that a very large proportion of the patterns discovered by SIATEC are not relevant to
this particular analytical focus. Generating a cover with the relatively high cover-ratio threshold of 20 per-
cent produces a cover consisting of only six patterns—three primary and three secondary. Setting a lower
threshold in this case tends to increase the number of secondary patterns discovered.

Patterns 1 and 2, the first and second patterns discovered, are the inversion of the subject, and subject
itself respectively. These patterns are the same as those discovered by COSIATEC, and are labeled as the
subject of the work as analysed by Dreyfus (1996, p. 10). The two secondary patterns, 1.1 and 2.1, are
both clearly subsets of their parent patterns. From an analytical perspective, the most interesting aspect of
these patterns is how their individual pattern of occurrence differs from that of their parent, which may be
described as an instance of entanglement (Wiggins et al., 2002). This is particularly apparent for pattern
2.1 from bar 16 until the end, where many instances of the pattern overlap. As well as highlighting the
high density of this simple descending three-note quaver pattern at the end of the piece, the change in the
translations of pattern 2.1 in relation to pattern 2 suggest some sort of developmental change to the primary
pattern. In fact, this change corresponds to the note that immediately follows an occurrence of pattern 2,
which in these closing bars forms an interval of a 2nd. All previous occurrences, except for the occurrence
preceding bar 9, are followed by a larger interval, most commonly a 5th.

It cannot really be argued that pattern 1.2 is a perceptually salient pattern when considered as a sin-
gle occurrence. However, when taking into account the larger pattern that is formed by the overlapping
occurrences, an important pattern emerges (Figure 3). Pattern 1.2 is indicative of the gap-fill pattern that
accompanies pattern 1 in bars 3–5 and 11–13 (where it appears in the treble voice), and is also embedded
in the structure of pattern 1 itself.

pattern 3

pattern 2.1

pattern 2

pattern 1.2

pattern 1.1

pattern 1

 1  5  9  13  17  21

te
c-

pa
tte

rn
s

bars

Figure 1: A schematic representation of the primary and secondary patterns selected from the SIATEC
analysis of BWV 772. The filled boxes are primary patterns, the empty boxes are secondary patterns. Each
box represents a pattern occurrence. To aid clarity, patterns that overlap are draw alternately above and
below the line.
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(a) Pattern 1: bar 3 (b) Pattern 2: bar 1 (c) Pattern 3: bar 1

Figure 2: The primary and secondary patterns selected from the SIATEC analysis of BWV 772.

Figure 3: Bars 3–4 from BWV 772. Square boxes above notes signify the beginning of an occurrence of
pattern 1.2.

6 Future Work
Applied examples from the literature present several variations on the greedy algorithm that have proved
useful in particular domains, which may similarly be beneficial in our case. Marchiori & Steenbeek (1998)
describe the Enhanced Greedy algorithm, which has a more sophisticated heuristic for breaking ties
when adding new covering sets of equal size to the solution. At each iteration the algorithm also checks for
(and possibly removes) sets that become ‘nearly’ redundant in the solution due to the addition of new sets.
The Iterated Enhanced Greedy algorithm is also described, in which a subset of the currently
best (smallest) cover is used as an initial partial solution for a further iteration of the algorithm. Another
approach that would also warrant empirical investigation in this context is the multiple weighted set cover
problem, which is a further generalisation of the basic set-cover problem where events must be covered a
specified minimum number of times (Yang & Leung, 2005). Alternative approaches to the basic greedy
algorithm, including approximate linear programming and exact branch and bound method, are discussed
in Caprara et al. (1998).

7 Conclusion
An approach to automated musical analysis has been presented. The method is essentially a selection
algorithm based on a set of heuristics that attempt to determine the quality of discovered patterns in terms
of musical salience. The SIATEC algorithm is integral to the process, since it provides the initial set of
discovered patterns from which the selection is made. Our method also owes much to the COSIATEC
algorithm, which is also a means of selecting important patterns from the patterns discovered by SIATEC.
The primary difference between our approach and COSIATEC is that our method is not based solely on the
principle of optimising compression, but instead allows musicological principles to influence the outcome
alongside information theoretic measures. As a result, we are able to select patterns that are deemed to be
of musicological interest, but which may not lead to the generation of a complete or optimally compressed
representation of the dataset, as is generated by COSIATEC. For example, we are able to select multiple
patterns that share notes in common, but which have different patterns of occurrence within a piece. The
ability to analyse the occurrences of closely related patterns within a work can provide interesting insight
into the compositional treatment of thematic ideas.

There is still a great deal of work to be done in order to improve the quality and reliability of automated
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music analysis. However, even as it stands, our system opens up some very interesting possibilities for
future work. Automated systems cannot currently hope to match the quality of analysis performed by
professional musicologists, but do have an advantage of being able to process very large amounts of data.
The ability to reliably isolate significant musical patterns and infer basic structural relationships between
patterns from across a database of many thousands of pieces of music would create a rich source of musical
knowledge, with exciting potential for a range of future research.
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Lemström, K. & Pienimäki, A. (2007). On comparing edit distance and geometric frameworks in content-
based retrieval of symbolically encoded polyphonic music. Musicæ Scientiæ, Discussion Forum 4A,
135–152.

Lerdahl, F. & Jackendoff, R. (1983). A Generative Theory of Tonal Music (1999 ed.). Cambridge, MA,
USA: MIT Press.

Marchiori, E. & Steenbeek, A. (1998). An iterated heuristic algorithm for the set covering problem. In
Mehlhorn, K. (Ed.), Proceedings of the Workshop on Algorithm Engineering, (pp. 155–166).

Meredith, D. (2006). Point-set algorithms for pattern discovery and pattern matching in music. In Craw-
ford, T. & Veltkamp, R. C. (Eds.), Proceedings of the Dagstuhl Seminar on Content-Based Retrieval,
number 06171 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl.

Meredith, D., Lemström, K., & Wiggins, G. A. (2002). Algorithms for discovering repeated patterns in
multidimensional representations of polyphonic music. Journal of New Music Research, 31(4), 321–345.

9



Meredith, D., Lemström, K., & Wiggins, G. A. (2003). Algorithms for discovering repeated patterns in
multidimensional representations of polyphonic music. In Cambridge Music Processing Colloquium
2003, Cambridge, UK. Department of Engineering, University of Cambridge.
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