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ABSTRACT 

The research described in this thesis investigated colour processing in children and 

adolescents with autism spectrum disorders. Although idiosyncratic responses to colour 

have been widely reported in autism (William, 1999; White & White, 1991), and 

therapeutic interventions involving colour are frequently used with individuals with this 

disorder (Howlin, 1996; Irlen, 1991), few controlled colour processing investigations 

have been carried out. The experiments reported in the thesis have two main points of 

focus. Firstly, the therapeutic effects of colour overlays on different aspects of 

cognition were tested, and secondly, studies into colour discrimination, memory, 

naming and categorisation were carried out in order to evaluate the role of language and 

perceptual processing in colour processing. In experiments one and two it was 

established that significantly more children with autism than age and intelligence 

matched controls improved their reading speed when using a colour overlay. In 

experiments three and four, these effects were further investigated using visual change 

detection and reading comprehension tasks with and without colour overlays. Again, a 

significant improvement in performance was noted in the autism group when using 

colour overlays. The results from experiments four to eleven, testing colour 

discrimination, memory and naming failed to confirm atypical colour processing in 

autism, although the findings did suggest that cognitively unimpaired children with 

autism showed sharper category boundaries than those with autism and cognitive 

impairment and typically developing controls. Finally data from a case study of a boy 

with Asperger Syndrome who showed highly idiosyncratic colour responses were 

presented. The findings from the studies are discussed within the context of current 

theories of visual cognition in autism and theories of colour perception. 
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"I looked through the window at the garden outside, Instead of looking from 

tree to tree and shrub to shrub, I saw one whole picture at once: one whole 

garden. More than this, though, I saw the view through the window as no 
longer a picture. It looked like a place - not just theoretically but visually. 
It looked as if I could just walk straight out there, not 'with' things but 

among them. What I had had to learn in theory, I could now see in 

perception. Id learned that the world had available depth to be 

experienced in moving through it, but I'd never actually consistently or 

properly seen that variation. Now I had merely to look at something to 

know it as it was. " 

Donna Williams (1999) - an excerpt from her novel "Like Colour to the 

Blind" (p 150), describing the first time she wore colour glasses. 
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CHAPTER ONE 

INTRODUCTION 

The studies presented in this thesis aim to investigate colour processing in children with 

autism spectrum disorders. There are few reported studies in the literature investigating 

colour processing in autism, and so little is known about the way in which these 

children process colour information. The rationale for the studies presented in this thesis 

is derived from three main sources. First, idiosyncratic responses to colour information 

have been widely reported in autism. Second, it has been suggested that colour may be 

used in therapeutic intervention for children with autism. For example, Howlin (1996) 

has highlighted the use of colour in light therapy, and Irlen (1991) has suggested that 

the use of colour overlays and tinted lenses may reduce symptoms of visual stress in 

children with autism. Third, an aspect of autism that has aroused considerable interest 

concerns enhanced perceptual information processing. Indeed, several prominent 

theoretical accounts of autism propose that many aspects of the disorder arise from such 

a basic abnormality in information processing. It is hoped that the study of colour 

perception in autism will serve to inform both therapeutic approaches to autism, and 

will also extend out understanding of atypical perceptual processing 

Characteristics of Autism Spectrum Disorder (ASD) 

Autism is characterised by deficits in social interaction, verbal and nonverbal 

communication, and in imaginative activity with a markedly restricted repertoire of 

activities and interests (Diagnostic and Statistical Manual of Mental Disorders; DSM-IV 

1994). DSM-III (1980) included abnormal responses to sensory stimuli (Gillberg & 
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Coleman, 1992). However, this was omitted in later formations (O'Neil & Jones, 1997) 

due to confusion over the level of description of the symptoms (Ornitz, 1989). For 

example, unusual responses to sound tend to be thought of as a symptom of disordered 

language (Rutter & Lockyer, 1967) rather than a discrete sensory problem in its own 

right. Similarly, painful hypersensitivity or an obsession with particular textures has 

been grouped under the heading of `responses to the environment' or `affective 

response' (Volkmar, Cohen & Paul, 1986). 

Whilst sensory processing abnormalities are not currently included in DSM-IV as 

diagnostic criteria, numerous authors refer to a high incidence of sensory processing 

abnormalities in autism (Dawson, 1983; Filipek, Accardo, Baranek et al., 1999; Gillberg 

& Coleman, 1992; Mayes & Calhoun, 1999). Indeed, based on a review of research 

findings, first hand reports and clinical accounts, it has been suggested that between 30- 

100% of children with autism spectrum disorders have sensory perceptual abnormalities 

of some kind (Dawson & Watling, 2000). 

Reported abnormal responses to sensory stimuli within the autism spectrum have 

included hypo sensitivities (lowered response), hypersensitivities (heightened response), 

sensory distortions (misrepresentation of individual surroundings), sensory tune outs 

(sound or vision may dim or black out temporarily), sensory overload (input to more 

than one sense modality causes stimuli confusion) and multi-channel perceptions 

(experiences of synaesthesia) (O'Neil & Jones, 1997). Such responses have been 

reported in response to tactile (Cesaroni & Garber, 1991; Joliffe, 1992), auditory 

(Cesaroni & Garber, 1991; Dahlgren & Gilberg, 1989; Khalfa, Bruneau, Rog et al., 

2001 Ornitz, 1974), olfactory and gustatory (Kientz & Dunn, 1997), vestibular (Hatch- 
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Rasmussen, 1995), multisensory processing (Williams, 1999), and visual stimuli (Irlen, 

1991; Kientz & Dunn, 1997; Williams, 1999). 

Sensory modulation refers to the ability to filter or attend selectively to sensory 

information. Some researchers have speculated that this is the primary symptom of 

autism from which other symptoms can be understood (for example Ornitz, 1989). For 

instance, children with autism demonstrate an obsessive desire for the preservation of 

sameness and will notice minor changes in their environment that to others seem small 

and insignificant (Happe, 1994). A simple rearrangement of a piece of furniture or 

being driven via a different route to school can be very distressing for a child with 

autism (Kanner, 1943; Happe, 1996). This resistance to change and dependency on 

rigid rituals is thought to be a result of avoidance of disturbing sensory input. In 

typically developing individuals, sensory overload has been related to changes in 

attention (Hockey, 1970), social withdrawal (Gottschalk, Hare & Bates, 1972) and 

ritualistic behaviour (Rago & Case, 1978). Similarly in autism, correlations have also 

been noted between unusual sensory processing and social aloofness (Dawson, 1983; 

Wing & Attwood, 1987), and Saulinder, Fein and Liss (2001) found that sensory 

underreactivity was most strongly associated with impaired socialisation skills. 

Baranek (1999) has suggested that early identification of abnormal sensory motor- 

processes could aid the early identification of autism (Baranek, 1999). In agreement 

with this are Gillberg, Ehlers, Schaumann et al. (1990) who suggest that if autism is to 

be recognised in infancy, then the focus of research needs to be shifted from the typical 

speech/language problems to recognition of these abnormal perceptual responses 

(Kanner, 1943; Grandin & Scariano, 1986; Myles, Cook, Miller et al., 2000). 
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However, research addressing speech and language problems is also important as this is 

usually the first indicator that a child may fall within the spectrum (Howlin & Goode, 

1998; Lord & Paul, 1997), and impaired communication can often cause family 

members the most concern (Bristol, 1984). Follow-up studies of children with ASD 

have revealed that language and communication problems are persistent and closely 

related to both subsequent prognosis (Howlin, Mawhood & Rutter, 2000; Mawhood, 

Howlin & Rutter, 2000; Szatmani, Bryson, Boyle et al., 2003) and challenging 

behaviour (Sigafoos, 2000; Van Berckelaer-Onnes, Van Loon & Peelen, 2002). 

All individuals with ASD show qualitative impairments in verbal and non-verbal 

communication, irrespective of their level of functioning, and approximately one third 

to one half of those with a diagnosis of an autistic disorder never acquire speech 

(Bryson, 1996; Lord & Paul, 1997). Those who do develop speech, however, show a 

very uneven pattern across the different areas of language. Phonology appears to be 

relatively spared in individuals with ASD, although vocal quality, intonation and stress 

patterns are strikingly atypical (Lord & Paul, 1997; Tager-Flusberg, 2001). No specific 

impairments in syntax are reported (Kjelgaard & Tager-Flusberg, 1999; in Tager- 

Flusberg, 2001) and similar patterns of performance within the ASD population are 

found in grammatical development and levels of achievement (Tager-Flusberg, 2001). 

Semantic development in particular is one area that has been shown to be problematic in 

ASD, and some of the problems exhibited include immediate and delayed echolalia, 

pronoun reversal, the use of metaphors and neologisms, and difficulties with figurative 

languages (Howlin, 1999; Jordan, 1999; Lord & Paul, 1997). Although vocabulary 
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acquisition may be good in some individuals with ASD, certain classes of words, such 

as social-emotional terms, are underrepresented (Tager-Flusberg, 2001), and problems 

in comprehension are more frequent than would be expected on the basis of expressive 

vocabulary ability (Lord & Paul, 1997). Pragmatic difficulties are shown in both non- 

verbal and verbal communication, and deficits in conversation, discourse and narrative 

are common amongst high functioning individuals (Losh & Capps, 2003; Tager- 

Flusberg, 2000). 

There are several theoretical constructs that are used to explain the specific behavioural 

patterns of individuals with ASD. The three most influential accounts have included 

theory of mind, executive functions and central coherence. The theory of mind 

hypothesis has attempted to explain the social-communicative problems of people with 

ASD in terms of a specific disability in attributing mental states to themselves and 

others (Baron-Cohen 1995,2000; Baron-Cohen, Leslie & Frith, 1985). Theory of mind 

(TOM) tasks often involve understanding and predicting behaviour based on false 

belief An example of this is the classic Sally-Ann task (Wimmer & Perner, 1983). In 

this task the child is shown two dolls, one called Sally and one called Ann; Sally has a 

basket and Ann has a box. The child watches as Sally places her marble in the basket 

and goes out. Whilst away, Ann moves Sally's marble from the basket to her own box 

and then goes out. When Sally returns, the children are asked where she will look for 

her marble. In order to pass the task, children must appreciate Sally's false belief. 

Given that the communicative deficits in autism profoundly impact on the lives of these 

individuals, it is unsurprising that research efforts have focused in this area. However, 

this has meant that many non-social features remain largely unexplained (Happe, 1999; 

Plaisted, 2000). The non-social features of autism are rather varied, but include a 
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restricted repertoire of interests, repetitive and obsessive behaviours, rigidity and 

perseveration as well as uneven development of skills and intelligence. 

Substantial evidence suggests that autism can be reliably diagnosed on the basis of early 

social responsiveness seen in play, joint attention and imitation (Lord, 1995; Moore & 

Goodson, 2003) at around two years. In order to reach criteria for diagnosis, symptoms 

of autism must be in evidence before the age of three years (APA, 1994; WHO, 1992). 

However TOM abilities are apparent in typically developing children at approximately 

the age of four, and therefore symptoms of autism are present before TOM develops 

(Tager-Flusberg, 2001 a). This then raises serious questions about the relationship 

between TOM deficits and the social and communication problems found in autism. 

Further, experimental studies have shown that individuals with a clear diagnosis of 

autism can succeed on TOM tasks (Charman, 2003), without showing corresponding 

levels of spontaneous social adaptation (Bowler, 1992; Klin, 2000). As Klin (2000) has 

suggested, the `all or nothing' nature of the task results in dichotomous data (e. g. 

passers and failers) for abilities that are better conceptualised as dimensional. 

Additionally, TOM tasks are often presented in an explicit, verbal problem-solving 

format which bears little resemblance to naturalistic social situations. 

Executive function is an `umbrella' term for a broad array of mental operations. This 

theory has sought to explain the diagnostic features of autism as arising from deficits in 

regulating behaviour through planning, monitoring and inhibiting attention. Functions 

are believed to be mediated by the frontal cortex (Hill, 2004). Several independent 

studies have found evidence of poor performance based upon measures of executive 

function in children and adolescents with autism (Hughes, Russell, & Robbins, 1994; 
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Ozonoff, Pennington & Rogers, 1991). The most robust finding from executive 

functioning research is that individuals with ASD tend to make perseverating errors and 

have problems with set-shifting and planning (Griffith, Pennington, Wehner et al., 1999; 

Liss et al., 2001). Executive dysfunctioning is able to explain some of the non-social 

deficits in ASD, such as repetitive and stereotyped behavioural patterns (Bailey, 

Lecouteur, Gottesman et al., 1995) but is unable to provide an explanation for the islets 

of ability and areas of superior functioning often seen in these individuals. In order for 

executive function deficits to be considered a diagnostic marker, deficits should be 

universal (Hill, 2004), and yet several studies have shown no evidence of executive 

function deficits in individuals with autism (Baron-Cohen, Wheelwright, Stone et al., 

1999; Hill & Russell, 2002). Executive function deficits have also been found in other 

neurodevelopmental disorders such as attention deficit hyperactivity disorder (ADHD) 

(Pennington & Ozonff, 1996). 

Most pertinent to the research described in this thesis are theories of autism that attempt 

to account for atypical perceptual processing. These include the weak central coherence 

theory (WCC) (Frith, 1989; Happe, 1999), the enhanced perceptual functioning theory 

(EPF) (Mottron & Burack, 2001) and the reduced generalisation hypothesis theory (RG) 

(Plaisted, 2001). 

The WCC theory proposes that autism is characterised by a processing bias in favour of 

local features at the expense of global, context dependent meaning or Gestalt. Thus the 

performance of individuals with autism on such tasks as the block design test from the 

Weschler Intelligence Scales (Happe, 1994), and the embedded figures test (Witkin, 

Oltman, Raskin et al., 1971) which requires participants to process the local parts of the 
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stimuli and neglect the context in which the stimuli is presented, is frequently found to 

be better than that of intelligence and age matched controls (Jolliffe & Baron-Cohen 

1997; Shah & Frith, 1993). 

The term `high level' WCC has been used to explain findings from studies of 

contextual/verbal-semantic processing in which individuals with autism frequently 

perform poorly (Plaisted, Saksida, Alcantara & Weisblatt, 2003). For example, 

participants with autism have been found to read fewer homographs correctly in context 

than matched controls (Frith & Snowling, 1983, Happe, 1996). In an early study, 

Hermelin and O'Connor (1967) had shown that children with autism differed from 

developmentally delayed children in being unable to group items according to category 

in order to increase memory, and more recently Tager-Flasberg (1991) found that 

semantic similarity in lists of nouns did not facilitate immediate free recall in 

participants with autism. Further, in a study with able participants with autism, Jolliffe 

& Baron-Cohen (1999) found that they were unable to draw bridging inferences 

between sentences. 

In an attempt to explore WCC at low perceptual levels, Happe (1996) asked individuals 

with autism to make simple judgements about standard textbook visual illusions. 

Illusions can be analysed into a 'to-be-judged' figure and an inducing context or ground 

(Gregory, 1997). Happe reasoned that if people with autism have a tendency towards 

fragmented perception and focus on the to-be-judged parts without integrating them into 

the surrounding illusion-inducing context, one might expect them to succumb less to the 

typical misperceptions. The findings supported the hypothesis, and showed that people 

with autism were more likely to make accurate judgements about the illusions than 
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typical and mental age matched controls. This superior ability in autism appeared to be 

related to disembedding skill, since when the figures were artificially disembedded (by 

highlighting the to-be-judged parts with raised coloured lines) control groups performed 

as well as the autism group. However, Ropar and Mitchell (2001) failed to replicate 

this finding when using a more sophisticated methodology. Their study differed from 

that of Happe in that participants manipulated the elements in the display about which 

they were to make judgements and verbal responses were not made. The autistic group 

showed no advantage on this task, and the data analysis showed that performance on 

this task did not correlate with scores from other visuospatial tasks believed to measure 

weak central coherence. 

Jarrold and Russell (1997) found that individuals with autism showed less facilitation 

than controls on a counting task when items were displayed in the canonical groupings 

used on dice. The authors interpreted these findings as showing that the participants in 

the autism group counted each dot separately, without attention to their global 

configuration, and thereby supported the notion of low level weak central coherence. 

Hobson, Ouston, and Lee (1988) and Langdell (1978) have shown that children with 

autism are less affected by inversion of faces in recognition tasks. In inverted faces, the 

configural features are disrupted and the ability to recognise them suggests a feature- 

based processing style for faces in autism. This may also account for their deficits in 

processing emotional (versus identity) information (McKelvie, 1995). A more recent 

study suggests that individuals with autism are not unable to form configuration-based 

face representations, but are less likely to use contextual information in perceptual tasks 

(Teunisse & de Gelder, 2003). Similar findings have emerged from linguistic 
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processing tasks (e. g. Jolliffe & Baron-Cohen, 1999). Neurological studies have 

provided evidence for abnormal face processing in autism. For example, McPartland, 

Dawson, Webb et al., (2004) found slowed neural speed of face processing in autism, 

and Pierce, Muller, Ambrose et al., (2001) found that the fusiform face area did not 

show consistent activation in response to face stimuli in participants with autism. 

Superior performance in autism relative to controls has been demonstrated in a series of 

visual search tasks. In a visual features task, the participant is required to detect a target 

item that differs from distractor items along a single dimension (e. g. searching for a red 

X target among red T and green distractors). Studies have shown that children with 

autism were better than normally developing children, matched for age and general 

ability, at detecting a pre-specified target hidden among simultaneously presented 

distractors (O'Riordan, Plaisted, Driver et al., 2001; Plaisted, O'Riordan & Baron- 

Cohen, 1998a). Another example comes from studies using the Navon task, in which 

large letters composed of small letters are presented. Subjects are required to report to 

either the local or global letter, in conditions where these are congruous (matching) or 

incongruous (non-matching). The usual finding is that normal subjects show a global 

advantage (they are faster to name the big letters than the small) and global effect is 

processed first. Ozonoff, Strayer, McMahon et al., (1994) failed to find a local 

advantage or precedence effect in the group with autism, although this effect may have 

been caused by the unusually long exposure times used in the study (Jolliffe and Baron- 

Cohen, 1997). However, this is unlikely since Mottron, Burack, Stauder et al., (1999) 

also failed to find a local advantage or precedence effect in autism when using brief 

presentation times. Indeed their findings showed a specific global advantage in autism. 
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Pellicano, Gibson, Maybery et al., (2003) also provide evidence for the WCC theory. 

Children performed two visual search tasks, a global dot motion task which required 

coherence, and a flicker sensitivity task which did not, as well as additional measures of 

coherence. The findings showed that children with autism were only significantly 

worse than controls on the visual tasks requiring coherence. 

Few studies have attempted to study WCC across domains in the same sample of 

children. Such a study was carried out by Hoy, Hatton & Hare (2004), who compared 

the performance of age and ability matched typically developing children and children 

with autism on the visual illusion task (Happe, 1997), and a homophone task resembling 

the homograph task (Frith & Snowling, 1983). The homophone task had two conditions 

(common homophones versus rare homophones). Children were told that they would 

hear a short story and would be shown some pictures. They were told to listen very 

carefully to the story, as it would allow them to find the picture of one of the words in 

the story. They were then read a short ambiguous sentence followed by the appropriate 

unambiguous sentence. They were then shown the card with the appropriate pictures 

and a correct response was scored if the child selected the correct representation. 

Consistent with the findings of Ropar & Mitchell (1999; 2001), both the autism and 

control groups were fooled by the visual illusions relative to control items. Therefore 

findings from the visual illusion task are not supportive of WCC, as the children did not 

show an enhanced ability to ignore inducing context of illusions. The group with 

autism only made significantly more errors on the rare condition of the homophone 

task, and further analysis revealed this was due to difference in BPVS verbal ability 

scores rather than diagnosis status. If the tasks used in this study are genuine measures 

of central coherence at the verbal and visual level, than the results failed to support the 
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view that weak central coherence is a cross-domain tendency that is specific to autism. 

It is argued that the results from previous studies that have found a difference between 

groups on the homograph and homophone tasks (Frith & Snowling, 1983; Jolliffe & 

Baron-Cohen, 1999; Snowling & Frith, 1986) may be more reflective of verbal ability 

level rather than problems in coherence. 

An obvious advantage of the WCC theory, given the uneven cognitive profile in autism, 

is that it can account for skills as well as failures, and the suggestion that superior 

performance is found on tasks where piecemeal processing conveys an advantage has 

received some empirical support. However, less clear is how a single cognitive 

mechanism can give rise to both `low' and `high' level WCC. One suggestion has been 

that in autism there is a `narrow' spotlight of attention that enhances processing at 

particular locations (Townsend & Courchesne, 1994). Another proposal has been that 

right hemisphere attentional processes that process overall forms (Lamb, Robertson, 

Knight, 1990) may be compromised in autism, and thus constitute the locus of the `low' 

level WCC mechanism. 

Studies investigating the WCC theory have found two findings to be consistent. It has 

been shown that individuals with autism are able to respond to the global level of a 

hierarchical stimulus (Mottron & Belleville, 1993; Plaisted Swettenham & Rees, 1999). 

It has also been shown that individuals with autism show faster and more accurate 

responses to the local level (Mottron et al., 1993; Plaisted et al., 1999). It is suggested 

that WCC is more pervasive in low functioning individuals, while integration may be 

relatively spared in higher-functioning individuals (Brock, Brown, Boucher et al., 2002; 

Lopez & Leekam, 2003; Minshew, Meyer & Goldstein, 2002). 
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As well as accounting for perceptual abnormalities, the WCC theory has also been 

proposed to offer insights into specific communication problems of people with autism 

spectrum disorders (Noens & Van Berekelaer-Onnes, 2005), since a weaker drive for 

central coherence leads to problems in sense making and consequently in 

communication. Communication requires rapid processing of auditory (speech) and 

visual (non-verbal cues) stimuli (Fay & Schuler, 1980). Without coherence, one 

perceives a very disjointed picture with disconnected bits and pieces. An example 

comes from Van Dalen (1994) who reports on a high functioning autistic engineer who 

describes himself as `seeing blind and hearing deaf. ' Despite neither being the case, he 

is disadvantaged by the time he needs to process the stimuli step by step. Since natural 

communication occurs at a speedy pace, he frequently becomes confused by even the 

most essential information. 

Many experimental studies highlight the inability of individuals with autism to use 

context. Happe (1993; 1994) carried out studies on figurative language in autism, and 

found an impairment in their understanding of, and their use, of appropriate mental state 

explanations for story characters' non-literal utterances such as lies, jokes and sarcasm. 

Although the participants with autism gave as many mental state explanations as the 

participants in the control groups, their responses were not context appropriate. Studies 

by Jolliffe and Baron-Cohen (1999; 2000) found that individuals with both high- 

functioning autism and Asperger syndrome failed to use context to interpret ambiguous 

sentences that were presented auditorally as well as when arranging sentences 

coherently on a visual task. 
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Noens & Van Berekelaer-Onnes (2005) have attempted to explain how WCC may also 

affect specific areas of language. Prizant (1983) predicted that children with autism use 

a Gestalt strategy in early language. Gestalt language can be explained in terms of 

memorised forms or whole units built from both linguistic processes and a combination 

of rules. Echolalia, pronoun reversal, neologisms and metaphorical remarks could all be 

generated this way. If individuals with autism have an inability to extract meaning for 

context as predicted by WCC, the only way to learn language may be to memorise 

complete chunks and reproduce them identically. This would cause problems with both 

literal association and unfamiliar words or those spoken in a context different to that in 

which they were learned (Noens & Van Berekelaer-Onnes, 2002; cited in Noens & Van 

Berekelaer-Onnes, 2005). Autistic children have been shown to be significantly poorer 

than normal children at distinguishing inappropriate utterances, suggesting that they 

have poorer knowledge about the social constraints of appropriate communication 

(Surian, Baron-Cohen & Van de Lely, 1996). They have also been shown to be overly 

literal and to talk at great length on socially inappropriate and obscure topics (Ozonoff 

& Muller, 1996). The tendency to take things literally is also demonstrated in pedantic, 

over-exact comprehension and production (Happe & Frith, 1996). A reliance on 

memory forms is evidenced in concept formation as shown from a report by Grandin 

(1995) whose concept of `cat' consists of a collection of all the cats she has ever seen 

rather than that of a generalised cat. 

There are alternative proposals for the mechanism that underpins enhanced local 

processing. The generalisation hypothesis (Plaisted 2001) proposes that abnormal 

perceptual processing in autism enhances the salience of individual stimulus features, 

and allows greater acuity in their representation without compromising global 
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configurations. According to this theory, individuals with autism process features 

unique to a situation or stimuli relatively well, and features held in common with other 

stimuli rather poorly. This leads to two predictions. First, individuals with autism 

should show superior performance on a difficult discrimination task; for example, one 

where stimuli to be discriminated hold many elements in common and each possesses 

very few unique elements. Second, individuals with autism should show inferior 

performance on a task that requires categorization of two sets of stimuli (Plaisted, 

Saksida, Alcantara et al., 2003). 

Support for the first prediction was demonstrated in a perceptual learning task (Plaisted, 

O'Riordan & Baron-Cohen, 1998b). In these tasks, two very similar stimuli, which at 

first appear indistinguishable, become distinguishable following a period of exposure. 

If individuals with autism process the unique elements of stimuli well and the common 

elements poorly, they should not require exposure to the stimuli in order to discriminate 

them. The findings from the study supported this, and showed that participants with 

autism performed as well on discrimination tasks involving novel stimuli as on those 

with discrimination conditions involving pre-exposed stimuli. 

Support for the second prediction, that individuals with autism should show a deficit in 

categorisation, was found using a prototype abstraction task (Plaisted, O'Riordan, 

Aitken & Killcross; submitted; cited in Hill & Frith, 2003). When typical adults are 

first trained to categorise two sets of exemplars, they are subsequently able to categorise 

the prototype of each set more accurately than other non-prototypical exemplars even 

though they have never experienced the prototypes before. Individuals with autism 
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showed a deficit in category learning in the initial categorisation phase of a prototype 

experiment, and a reduced prototypes effect in comparison to normal subjects. 

The generalisation hypothesis predicts that a reduction in the processing of common 

features will reduce the extent to which prior experiences influence new experiences, 

therefore resulting in increased difficulties in extracting the gist or meaning from a 

current situation. Also, the proposal that individuals with autism process unique 

features better than normal individuals can account for why individuals with autism 

often notice features that seem irrelevant to those without the disorder. Finally, the 

proposal that perception operates differently in autism to allow for finer registration of 

the available stimuli has important implications for concept formation and category 

structure in autism. Specifically, the idea that perception in autism enhances the 

discriminability of stimuli predicts that category boundaries will be sharper and 

category content much narrower in autism. If categories have sharper boundaries, then 

it is less likely that novel unusual exemplars will be recognised and encoded as part of 

an existing category. This is highlighted by the interests of children with autism which 

tend to be characterised by very specific exemplars, so that a child with autism might be 

fascinated by a certain make of car, but entirely uninterested in other makes (Hill & 

Frith, 2003). 

Another influential theory that emphasises the importance of low-level sensory 

information is the enhanced perceptual functioning theory (EPF) (Mottron & Burack, 

2001). According to this theory, low level modules involved in the detection, 

discrimination and categorisation of perceptual stimuli are enhanced in autism. 

According to the EPF theory, pairs of systems compete in order to obtain a certain 
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effect or to fulfil a certain function. Within each pair, one is linked to low level 

processing and the other linked to higher order processes. Evidence for a bias towards 

low level processing in autism includes local versus global processing in a visual 

hierarchical task (Plaisted, Swettenham & Rees, 1999), local versus global featuring in 

graphic construction (Mottron, Belleville & Menard, 1999) and pitch (local) versus 

contour (global) in a musical task (Mottron, Peretz & Menard, 2000). Whilst the WCC, 

EPF and RG theories differ slightly in emphasis, all share the assumption that 

individuals with autism have enhanced low-level perception and comparatively weaker 

global processing. This means that they provide an important theoretical context within 

which to consider findings from experiments into colour processing in autism. 

Autism Spectrum Disorder and Colour Perception 

Although there is a large body of research into visual perception in autism, no studies 

have specifically investigated colour perception. This is surprising given that autistic 

children's idiosyncratic responses to colours are widely described in the clinical 

literature. Unusual behavioural responses described include, for example, refusing to 

use a blue towel or drink out of any cup that is not green. Most of what is known about 

these phenomena comes from self or parental reports. For example, an adult with 

autism has written about how, as a child, he had been unable to look at the yellow bike 

he had been given for Christmas because of its colour. His parents attempted to 

remediate the situation by painting the bike red, but this resulted in an orange colour 

that looked to the child as though it was on fire (White & White, 1987). Donna 

Williams, a high functioning woman with autism, has written about how different 

coloured light bulbs can be used to influence her mood as well as the degree of comfort 
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and accuracy with which she could see things. She has said "the red had me alert and 

aware and I started to look for things to do within the room instead of staring 

hypnotically at the mirror or wallpaper" (Williams 1999, p140). The Light and Sound 

Therapy Centre in London uses light therapy, and claims that this leads to 

improvements in physical and emotional functioning as well as in intellectual capacity 

in children with autism (Howlin, 1996). It has been claimed that light therapy is 

successful in remediating hypersensitivity to bright lights as well as difficulties with 

attention span and focusing. However, assessment of these claims has primarily been 

made through parental reports. 

Visual processing abnormalities commonly reported in autism include sensitivities to 

illumination and colours (Myles et al., 2000; Attwood, 1994). Other phenomena 

include the experience of visual distortions which may, for example, alter the perceived 

dimensions of rooms (White & White, 1987; Attwood, 1994). These visual processing 

abnormalities can often be difficult for others to understand, and yet they can have a 

profound impact on functioning, particularly within education settings. Visual 

distortions can result in difficulties writing on printed lined paper and maintaining 

appropriate spacing between letters and words (Myles et al., 2000). 

Colour overlays and tinted lenses have also been proposed to be of therapeutic benefit 

to individuals with autism. This is because autism and Meares-Irlen syndrome are 

believed to co-occur in some individuals with autism (Irlen, 1991; Williams, 1999; 

Wilkins, 2003). The term Meares-Irlen syndrome (also known as scotopic sensitivity 

syndrome or Irlen syndrome) describes `perceptual stress' whereby different 

components of light (such as colour and source) are thought to lead to perceptual 
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distortions when reading and/or viewing the environment (Irlen, 1991; Williams, 1999). 

For example, Irlen (1994) has proposed that, in the case of autism and Meares Irlen 

syndrome, perception becomes extremely fragmentary resulting in a range of negative 

outcomes. Individuals with this syndrome report that the perceptual distortions they 

experience when they read are reduced when the text is illuminated by light of a 

particular optimal colour (Evans, Wilkins, Busby et al., 1996; Wilkins, Jeanes, Pumfrey 

et al., 1996). Eye strain and headaches are reduced when spectacles tinted with this 

colour are worn (Wilkins , et al., 1996). 

Colour overlays are transparent coloured plastic sheets that are placed over texts without 

interfering with their clarity. They have been shown to eliminate symptoms of visual 

stress and reportedly increase reading speed (Jeanes, Busby, Martin et al., 1997; Irlen, 

1991), as well as having positive effects on reading comprehension, other aspects of 

visual processing and attitude to school, in children with Meares-Irlen syndrome 

(Croyle, 1998; Jeanes et al., 1997; Robinson & Foreman, 1999). There is some 

evidence that colour overlays are of benefit to a substantial number of individuals, and 

Wilkins (2003) estimates that 25% of the population will read more than 5% faster 

when using a colour overlay. There are no studies into the effects of colour overlays in 

autism, although Irlen (1991) has proposed that they may be of benefit to a significant 

proportion of individuals diagnosed with this disorder. Coloured overlays have been 

found to provide therapeutic benefit for epilepsy sufferers (Wilkins, 1995) and by 

adulthood, one third of all individuals with autism will have had at least two epileptic 

seizures (Olsson, Steffenburg & Gilberg, 1988). Greater benefits have also been 

reported in sufferers of migraine (Maclachlan, Yale & Wilkins, 1993), photosensitive 
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epilepsy (Wilkins, 1995), head injury (Padula, Argyris & Ray, 1994) and dyslexia 

(Evans, 2001). 

In summary, experimental studies of colour processing in autism have not been carried 

out to date, although much anecdotal evidence suggests that these individuals frequently 

respond idiosyncratically to particular colours. Further, there are reports suggesting that 

the use of lights, colour overlays and tinted lenses can be of significant therapeutic 

benefit for some individuals with autism. 

Of relevance, when considering research into colour processing in autism, is recent 

work showing that magnocellular and parvocellular systems function differently in 

autism in comparison to typical development (Boeschoten, Kemner, Kenemans et al., 

2004; cited in Milne, Swettenham & Campbell 2005; Deruelle, Rondan, Gepner et al., 

2004; Milne, Swettenham & Campbell, 2005). These systems have been implicated in 

enhanced perception and deficits in global processing as well as in colour perception. In 

primates, visual information from the retina projects to the primary visual cortex (V1) 

by way of the independent but linked magnocellular pathway and parvocellular 

pathways. The parvocellular pathway is most sensitive to high spatial frequencies and 

stationary or slowly moving targets, has a low temporal resolution and processes 

information used for wavelength and form discrimination. Conversely, the 

magnocellular pathway contains cells which are sensitive to low spatial frequency 

information like moving and flickering stimuli. It has a high temporal resolution and 

processes motion, spatial and depth information (Livingstone, Rosen, Drislane et al., 

1991). 
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The magnocellular system is commonly regarded as being colour-blind and primarily 

involved in the perception of motion (Schillier & Logothetis, 1990), whereas the 

parvocellular system mediates colour vision. However, it has been questioned as to 

whether the parvocellular pathway is the only way that colours can be discriminated in 

human colour vision. The parvocellular pathway is assumed to control conscious colour 

perception, yet evidence from two patients with cerebral achromatopsia, who lack 

conscious colour perception, shows that they are still able to use colour information. 

Results from a forced-choice colour- and luminance- discrimination task showed clear 

evidence of unconscious colour processing in these patients. These findings support the 

fact that discrimination may be mediated by neural systems which respond to fast 

flicker and are spectrally non-opponent such as the magnocellular system, or a system 

known as the koniocellular (K) system (Troscitinko, Davidoff, Humphrey et al., 1996). 

The koniocellular system is known to send projections to the primary visual cortex, 

although the functional characteristics of this system are as yet unknown (Casagrande, 

1994). 

The global aspect of a stimulus is represented by low spatial frequency information, and 

it is thought that the magnocellular visual pathway processes this. It has been shown 

that by attenuating the magnocellular pathway, the global precedence effect is also 

attenuated (Michimata, Okubo & Mugishima, 1999). Plaisted et al., (1999) have 

suggested that the local bias in children with autism seen on the Navon task could be 

attributable to high levels of activity in the high spatial frequency channels (parvocells). 

However, Milne, Swettenham, Hansen et al., (2002) have shown that, in a task in which 

children were required to detect the direction of moving dots in a random dot 

kinematogram, those with autism showed higher motion coherence thresholds which 
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points to low levels of activity in the low spatial frequency channels (magnocells). This 

replicated the findings of Spencer, O'Brian, Riggs et al., (2000) who also found high 

motion coherence thresholds using a random kinematogram in children with autism 

compared to verbal mental age typically developing children. 

It is of interest that low spatial frequencies have been suggested to mediate perceptual 

global bias, as seen in hierarchical stimuli such as Navon-type figures (Badcock, 

Whitworth, Badcock et al., 1990; Hughs, Nozawa, & Kitterle, 1996; Navon, 1977). 

Several studies have shown abnormal perception of these figures in autism (Mottron & 

Belleville, 1992; Plaisted, Swettenham & Rees, 1999), and Milne, Swettenham, 

Cambell et al., (2004) extended these findings by showing that the children with autism 

with a local processing bias had high motion coherence thresholds (reduced motion 

sensitivity), whereas those children with autism with a global processing bias had 

normal motion coherence thresholds. Milne, Swettenham & Campbell (2005) suggest 

that if coherent motion detection is indicative of magnocellular integrity, the reduced 

global bias and enhanced local bias seen in autism might be one outcome of abnormal 

magnocellular processing. 

Although the magnocellular pathway is known to inhibit the parvocellular pathway 

(Singer and Bedworth, 1973), it remains unclear whether a local processing bias occurs 

because of impairment and degradation of low spatial frequency processing, or because 

an impaired magnocellular pathway exerts less inhibition on the parvocellular system. 

Thus, if the magnocellular pathway controlling global processing is damaged in autism, 

enhanced local processing may reflect an intact but uninhibited parvocellular pathway. 

If damage to the magnocellular pathway results in higher levels of activity in the 
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parvocellular pathway where colour is processed, overactivity might result in some of 

the powerful and aversive experiences anecdotally reported. 

Of relevance to the question of brain abnormalities that give rise to unusual visual- 

perceptual experiences are findings from studies into dyslexia. Firstly, individuals with 

dyslexia have been found to show impaired function of the visual magnocellular 

pathway (lovino, Fletcher, Breitmeyer et al., 1998; Wilkins 2003) with high motion 

coherence thresholds, similar to those found in autism (Milne et al. 2002, Spencer et al., 

2002). Interestingly, it has been found that the sensitivity of most dyslexics to 

flickering stimuli and low contrast gratings and motion stimuli is lower than in 

individuals without dyslexia (Cornelissen, Richardson, Mason et al., 1995). On the 

other hand, the perception of colour and finely detailed stimuli have turned out to be no 

different from, and in some cases better than that in individuals without dyslexia (Stein 

& Talcott, 1999). It remains unclear whether this is the same for individuals with 

autism. 

Research has shown that some individuals with dyslexia benefit from the use of colour 

overlays. This has also been found to be the case for migraine sufferers who also show 

magnocellular abnormalities (Wilkins, 2003). However, a major problem with a 

magnocellular deficit explanation for the visual disturbance seen in individuals who 

benefit from the use of coloured overlays is how it can account for the wide range of 

self-selected colours used by these individuals (Evans, 2001). It also appears to be the 

case that a significant proportion of individuals without dyslexia or other disorders 

associated with magnocellular abnormalities benefit from the use of colour filters 

(Kriss, 2002; Wilkins & Grounds: in preparation), and magnocellular function does not 
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appear to be abnormal in Meares-Irlen syndrome (Evans et al., 1996; Simmers, Bex, 

Smith et al., 2001). 

An alternative explanation for the beneficial effects of colour filters is that it mediates 

cortical hyperexcitability. This theory is given support by the fact that coloured filters 

have been found to benefit individuals with a wide range of central nervous disorders 

where the cortex is presumed to be hyperexcitable, such as photosensitive epilepsy 

(Wilkins & Lewis, 1999), migraine (Evans et al., 2002; Wilkins, Patel, Adjamian et al, 

2002), and head injury (Jackowski, Sturr, Taub et al., 1996). Wilkins (2003) has 

proposed that visual distortions occur as a result of a spread of activation within the 

cortex that causes cells to fire inappropriately. Self-selected colour filters redistribute 

excitation in such a way that over-excitation of locally hyperexcitable regions is 

avoided. This proposal has been given recent support by findings from fMRI studies 

showing hyperexcitability in the visual cortex of migraine sufferers (Huang, Cooper, 

Satana et al., 2003; Huang, Wilkins & Cao, 2004). Further evidence is provided as 

topographic encoding of colour has been found in areas of the cortex such as V2 (Xiao, 

Wand & Felleman, 2003), and various spectral sensitivities of neurons in V3 and V5 

have also been reported (Zeki, 1980; Zeki, 1983). 

Whilst neurological studies into autism have been carried out, there is currently no clear 

consensus on the neural basis of this disorder. Findings from functional imaging studies 

have shown that several cortical and subcortical regions are implicated (Filipek, 

Richelme, Kennedy et al, 1999; Rumsey & Ernst, 2000), and structural imaging studies 

suggest that abnormalities in white matter are at least as extensive as those in grey 

matter (Filipek, 1992). Studies comparing the brains of those with autism to normal 
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controls have revealed differences in the temporal parietal cortex, the intraparietal 

cortex, the limbic system, the cerebella and the prefrontal regions (Belmonte & 

Yurgelum-Todd, 2003; Brambilla, Hardan, Ucelli di Nemi et al., 2003; Aylward, 

Minshew, Field et al., 2002; Bailey, Le Couteur, Gottesman et al., 1995; Carper, Moses, 

Tigue et al., 2002; Courchesne, 2002; Lainhart, Piven, Wzorek et al., 1997). It may also 

be the case that abnormalities in the brains of adults with autism reflect environmental 

effects. For example, abnormal social interactions may compound initial brain 

abnormalities resulting in deviant patterns of connectivity within and between regions 

(Johnson, 2000). Support for this suggestion comes from findings showing deviant 

cortical activation patterns in autism in comparison to controls, even in situations where 

behavioural measures do not distinguish the two groups (Mill, 2000). Rubenstien and 

Merzenich (2003) and Belmonte, Cook, Anderson et al., (2004) have proposed that 

there may be an imbalance between excitation and inhibition in key neural systems 

including the cortex in autism (Rubenstien & Merzenich, 2003; Belmonte et al., 2004). 

In fact, several candidate genes have been shown to control the early synaptic 

maturation of specific neuronal sub-populations controlling the balance between 

excitation and inhibition in the developing cortex of individuals with autism (Polleux & 

Lauder, 2004). 

Gustafsson (1997) has proposed a neural circuit theory of autism. This model proposes 

that excessive inhibition will result in the formation of inadequate cortical feature maps. 

Inadequate feature maps affect memory functions and higher cognitive functions by 

inhibiting the extraction of feature information from sensory input or cortical areas. 

Some feature maps may not have developed, others may have been delayed or have 
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narrow neural column width which may contribute to the uneven pattern of cognitive 

abilities seen in individuals with autism (Frith, 1989). 

One neuropathological study (Casonava, Buxhoeveden & Switala, 2002; Casonva, 

Buxhoeveden, Switala et al., 2002) found a reduction in the size of cortical 

minicolumns and an increase in cell dispersion within minicolumns in postmortem 

autistic brains. It was speculated that an increase in the total number of minicolumns 

would lead to over-connected and insufficiently inhibited neural networks, with 

consequent hyper-arousal and impaired selection. In a recent study, more cerebral white 

matter was found in the autistic brain than in the typically developing brain. Cortical 

regions failed to differ, but showed a trend towards being smaller in the autistic sample 

relative to total brain size (Herbert, Ziegler, Deutsch et al., 2003). This dissociation 

between cortex and white matter may alter the relationship between cortical structures 

and axonal connections, and consequently may compromise the optimality of 

connectivity in the brains of people with autism (Zhang & Sejnowski, 2000). This 

could result in deficits in complex information processing (Minshew, Luna, Sweeney et 

al., 1999) and in impaired temporal binding or neural integration (Nunez, 2000; Brock 

et al., 2002). 

Herbert al., 2003 and Just, Cherkassky, Keller et al., 2004, have proposed an 

underconnectivity model of autism. According to this model, there may be preservation 

and/or enhancement of the functions of individual cortical centres, but integration of 

information among cortical centres is impaired. This theory was proposed to explain 

the preservation of skills requiring less co-ordination among cortical centres (shown in 
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visual search tasks), as well as poorer performance on tasks (sentence and story 

comprehension) which require higher levels of integration. 

As previously suggested, no systematic studies into colour processing in autism have 

been carried out. However, such studies are of interest both clinically and theoretically. 

Therapeutic interventions involving exposure to coloured lights and filters appear to be 

of benefit to individuals with autism (Howlin, 1996; Irlen, 1991) although little is 

understood about the specific mechanisms involved or the extent to which these could 

benefit many more individuals with autism. Cases of "colour phobia" are frequently 

reported anecdotally, but little is known about the behavioural impact of these 

difficulties or of the individuals who display them. In the latter part of this chapter, two 

hypotheses, the magnocellular deficit account and the cortical excitability hypothesis, 

have been put forward to explain the beneficial effects of colour overlays in children 

with autism. They have also been discussed in terms of how they might account for 

other characteristics in autism such a bias towards local processing, their role in colour 

processing and how they sit with neurological theories of autism. Theories of enhanced 

perceptual or local processing in autism also provide a useful theoretical framework for 

research into visual processing, and the studies to be presented in this thesis will be 

discussed within the context provided by these. An issue that is of current theoretical 

interest relates to the role of perception and language in colour processing. As outlined 

in this chapter, children with autism typically possess an uneven profile of abilities, with 

good or enhanced perceptual processing and relatively poor language skills. The study 

of colour perception, categorisation and memory in these children may then provide a 

significant contribution to this debate. 
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Structure of the Thesis 

This thesis will investigate colour processing in autism and controls using a range of 

measures. In chapter two the effect of colour overlays on single word reading will be 

investigated. Chapter three will extend the findings from chapter two by investigating 

other aspects of cognition that improve when a colour overlay is used. The experiments 

will test reading comprehension and visual discrimination with and without colour 

overlays. Chapters four and five will investigate the role of perception and language on 

colour processing ability. Therefore colour naming, comprehension, discrimination and 

categorisation will be investigated in chapter four. Chapter five will attempt to isolate 

the effects of colour names and perceptual information in memory in three paired- 

learning experiments. Chapter six will provide a detailed case study of a child with 

Asperger's syndrome and colour obsessions. The results from all the studies will be 

discussed in chapter seven. 

All the children who participated in the studies throughout the research were boys. 

Ethical clearance was obtained from Goldsmiths College Psychology Department ethical 

committee. Permission was sought from both schools and parents of the individual 

children. Only those children whose parents gave written consent were allowed to 

participate in the tasks, and their parents were offered both the group results and the 

results for individual children. Testing for each of the studies was carried out in a quiet 

classroom at the children's schools. Experiments presented in chapters four and five took 

place in a classroom with only a day light bulb next to the computer as artificial light. 

Complete darkness could not be obtained as it would have caused the children undue 

stress. 
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CHAPTER TWO 

THE USE OF COLOUR OVERLAYS ON READING ABILITY IN CHILDREN 

WITH AUTISM* 

* In press; Journal of Autism and Developmental Disorders 

Summary: Abnormalities of colour perception in children with autistic spectrum 

disorders have been widely reported anecdotally. However, there is little empirical data 

linking difficulties in colour perception with academic achievement, for example 

reading ability. The Wilkins Rate of Reading Test (Wilkins, Jeanes, Pumfrey et al., 

1996) was administered with and without Intuitive Coloured Overlays to nineteen 

children with autistic spectrum disorders, and to the same number of controls 

individually matched for age and intelligence. The findings from the study showed that 

fifteen out of nineteen (79%) children with autism showed an improvement of at least 

5% in reading speed when using a coloured overlay. In contrast, only three out of 

nineteen (16%) control group children showed such an improvement. The findings 

suggest that coloured overlays may provide a useful support for reading for children 

with autism. 

INTRODUCTION 

In the introductory chapter, anecdotal reports of abnormalities in visual processing in 

autism were outlined. Therapeutic approaches, based on the assumption that visual 

processing abnormalities in autism are disruptive to everyday functioning were 

described and it was noted that, whilst investigations into these approaches with 
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individuals from other diagnostic groups with visual processing abnormalities have 

been carried out, such effects have not been systematically investigated in autism. 

The study described in this chapter will therefore be the first to evaluate one such 

therapeutic intervention. 

Colour overlays are transparent coloured plastic sheets that can be placed over printed 

texts without interfering with their clarity. An important aspect of this intervention is 

that participants themselves select the overlay that they perceive best improves the 

clarity of the printed text. The chosen overlay can be any one from the two sets of 

identical ten (nine coloured and one grey) provided in the Intuitive Overlays Selection 

pack (Wilkins 1994). Participants can use a single overlay or can select double overlays 

that provide a stronger colour. Research using this test has been carried out with 

children in mainstream schools, and has shown that in 7- 11 year old children, 5% read 

more than 25% faster, and 20% read more than 5% faster when using a coloured overlay 

(Wilkins, Lewis, Smith et al., 2001). In addition to improvement in reading speed with 

coloured overlays, corresponding improvements in reading accuracy have been found 

(Wilkins et al., 1996). Although such extensive studies have yet to be carried out with 

adults, researchers working in this area have suggested that the rate of improvement in 

adults might be similar to that found in children (Evans & Joseph, 2002). 

Although the Intuitive Overlays allow freedom of selection to participants, colour 

choice tends to be consistent within individuals over testing sessions. For example, in a 

study by Wilkins et al., (2001), 47% of a sample of children chose the same overlay on 

two separate testing sessions three days apart, and of the remaining sample, 21% chose 

an overlay of a similar colour (neighbouring chromaticity). It was also noted that the 
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children who chose exactly the same colour on both occasions showed the greatest 

improvement in reading speed. In another study, 368 children were given a random, 

rather than self-selected, overlay for use in the classroom for a few months before being 

given their chosen overlay. The findings showed that children who by chance were 

given their chosen overlay or one that was of similar colour, elected to use the overlays 

for a longer period than the children who had been given random overlays (Wilkins et 

al., 2001). 

Studies carried out with typically developing children have shown that the benefit of 

overlays is not simply due to placebo effects. One such research design, adopted in two 

separate studies (Wilkins & Lewis, 1999; Bouldoukian, Wilkins & Evans, 2002) 

compared reading rates with no overlay, with a chosen overlay, with a grey overlay, and 

a grey overlay that was identical except that it was labelled, "scientific prototype". 

Children were told that the prototype was new and combined all colours and that they 

would be the first to use it. The findings from the study showed that improvements in 

reading were only seen in those who had chosen a coloured overlay and no placebo 

effects were found. In a similar vein, Jeanes et al., (1997) tested the rate of reading in 

five different conditions. These were (1) without an overlay, (2) with a clear 

(transparent) overlay, (3) with the grey overlay from the Intuitive overlays, (4) with two 

coloured overlays from the same set, (5) with one of the chosen colour and one of a 

colour opposite (complementary) to that chosen. Again, the rate of reading was only 

superior in the chosen colour overlay condition. 

It would seem logical that the proportion of individuals who benefit from overlays will 

be over-represented in populations of people with reading difficulties such as dyslexia. 
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This was originally proposed by Irlen (1991). Dyslexia is evident when accurate and 

fluent word reading and/or spelling develops incompletely or with great difficulty 

(British Psychological Society, 1999) and it is the most common of the learning 

difficulties. Some of the subtle visual deficits seen in individuals with dyslexia are 

similar to those found in people with Meares-Irlen syndrome (Evans, 2001). However, 

recent findings have shown that individuals with dyslexia benefit from overlays only 

slightly more frequently than the rest of the population (Kriss, 2002). Many of the 

symptoms of Meares-Irlen syndrome are not specific to this disorder. For example, 

children with attention deficit/hyperactivity disorder (ADD/ADHD) share symptoms 

with both Meares-Irlen syndrome and dyslexia, and these include difficulties in tracking 

words and lines when reading, and poor concentration (Stone, 2002). Thus whilst 

overlay use has not yet been shown to benefit any one specific group, children with 

reading difficulties are more likely than others to report visual perceptual distortions 

(Evans, 2001; Wilkins, 2003). As coloured overlay use appears to be one way of 

removing these distortions, they may be especially beneficial to these children with 

reading difficulties. 

Donna Williams (1999) an able adult with autism was one of the first individuals with 

this disorder to describe therapeutic benefits from using coloured filters. She describes 

hyper-acute vision that results in a tendency to focus on minute details, and reports that 

tinted lenses enable her to view the world clearly and holistically. She has proposed that 

many individuals with autism would benefit from using coloured lenses. 

Although the mechanisms of benefit are currently uncertain, Wilkins (2003) has 

presented evidence that peripheral mechanisms in the brain are insufficient to explain 

46 



the phenomenon, and that the mechanisms are central and cortical in origin. However, 

clues to the cortical abnormalities that can be remediated by overlays come from several 

sources. For example, children who benefit from the use of colour overlays are twice 

as likely to come from families with a history of migraine as those who do not benefit 

(Maclachlan, Yale & Wilkins, 1993), and the cortex is believed to be hyperexcitable in 

migraine (Aurora & Welch, 1998; Huang et al., 2003). Visual stimuli that provoke 

photophobia, a negative reaction to bright lights, are similar to those responsible for 

causing seizures in patients with photosensitive epilepsy (Wilkins, 1995). Susceptibility 

to visual distortions can occur in the normal population, although migraine sufferers 

appear to be particularly sensitive to these (Marcus & Soso, 1989; Chronicle & Wilkins, 

1991; Chronicle, Wilkins & Coleston, 1995). Wilkins (2003) proposes that visual 

distortions occur when a spread of activation within the cortex causes cells to fire 

inappropriately. He further proposes that this cortical hyperexcitability is similar to that 

seen in epilepsy, though less extreme. In photosensitive epilepsy, hyperexcitability can 

be diffuse, though not necessarily uniform. Importantly, it sometimes appears to involve 

only few cortical orientation columns (Wilkins, 1995). Xiao, Wand, & Felleman 

(2003) have shown that in visual area V2, colour sensitive cells are distributed 

topographically according to chromaticity. Wilkins (2003) has proposed that 

appropriately coloured filters change the distribution of firing within the cortex so as to 

reduce the excitation in hyperexcitable regions. Findings from fMM studies 

investigating the hyperexcitability that occurs in migraine (Huang et al., 2003; Huang, 

Wilkins & Cao, 2004) have provided preliminary support for this suggestion. The 

cortical hyperexcitability hypothesis predicts that coloured filters will benefit 

individuals with any of a number of central nervous system disorders in which the 

visual cortex is hyperexcitable. In support of this are studies showing that coloured 
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glasses are beneficial in photosensitive epilepsy (Wilkins & Lewis, 1999), migraine 

(Evans et al., 2002; Wilkins et al., 2002) and head injury (Jackowski, Sturr, Taub et al., 

1996). 

Individuals with autism are liable to epileptic seizures (Rutter, 1970; Ornitz, 1973; 

Deykin & MacMahon, 1979; Wing & Gould, 1979; Steffenburg & Gillberg, 1986; 

Bryson, Clark, & Smith, 1988; Tanoune, Oda & Kawastima, 1988; Cialdella & 

Mamelle, 1989), and for one third of this population epileptic seizures are experienced 

from early adulthood (Gillberg, 1991). In addition, perceptual distortions are also 

reported fairly frequently (Irlen, 1991; Williams, 1999). It is therefore plausible to 

suggest that cortical hyperexcitability is characteristic of at least some individuals with 

autism. If this is the case and coloured filters do reduce cortical hyperexcitability, 

therapeutic benefits may well be found in this group. This will be tested in the 

following experiment. 

Although the majority of children with autism also have varying degrees of intellectual 

impairment, many learn to read (Locker & Rutter, 1969; Cobrinik, 1974; Bartak & 

Rutter, 1975). It is therefore possible to investigate changes in reading with and without 

coloured overlays in these individuals. The present study will test the hypothesis that a 

greater proportion of children with autism will read faster and more accurately with 

overlays than controls matched for verbal IQ and chronological age. 
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EXPERIMENT ONE: TESTING RATE OF READING 

Participants 

Nineteen children with autism participated in the experiment. These children were aged 

between 8 years and 4 months and 15 years and 1 month (mean 11 years and 10 

months). All children attended schools for which a formal diagnosis of autism was the 

criterion for entry. Their scores on the British Picture Vocabulary Scale (BPVS) (Dunn, 

Dunn, Whetton et al., 1997) ranged between 47 and 87 (mean 64.3). Control 

participants were typically developing children recruited from mainstream schools, and 

children with moderate learning difficulties recruited from special needs schools. These 

children were matched to the children with autism on an individual basis for 

chronological age, gender and verbal IQ as measured by the British Picture Vocabulary 

Scales (Dunn et al., 1997). 

All children also completed two colour abnormality tests: the Ishihara Test (Ishihara, 

1970) and the City University Colour Vision Test (3rd edition; Fletcher 1998). The 

Ishihara Test provides a sensitive measure of the red/green confusion associated with 

protanomly and deuteronomaly. The City University Colour Vision Test (3rd edition; 

Fletcher, 1998) involves discrimination of shades of colour, and includes a measure for 

tritan defects which can cause difficulty with the colour blue and some other colours. 

These data, together with age and verbal IQ data, is shown in table 2.1 below. 
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Table 2.1: Age, verbal 10 and colour test data for children with autism and 

controls. 

Group Age BPVS City Ishihara 

University 

Test 

Mean sd Mean sd Mean sd Mean sd 

Autism (N=19) 11.10 (2.23) 64.32 (10.91) 15.9 (0.33) 36.7 (1.04) 

Controls (N=19) 11.9 (1.95) 68.36 (12.75) 15.9 (0.34) 35.7 (1.21) 

Optimal score on City University colour test=16; Optimal score on Ishihara=38 

Materials 

The Intuitive Overlays are sheets of coloured plastic sheet suitable for placing over a 

page of text so as to colour the text beneath without interfering with its clarity. They 

sample chromaticity systematically and efficiently (Wilkins 1994). They are supplied in 

a teacher's pack and include two A5 size overlays of each of the following colours: 

rose, orange, yellow, lime green, mint green, aqua, blue, purple, pink and grey. 

The Rate of Reading Test is a passage consisting of 20 lines, each with the same 15 

common words in a different random order. The words are of high frequency and 

therefore familiar to poor readers. The random word order ensures that no word can be 

guessed from the context but each must be seen to be read. Absence of meaning has the 

advantage that children are often unaware of the errors of omission and insertion of 

words. The passage is read out aloud for a minute and the score is the number of words 
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read correctly in the appropriate order (Wilkins et al., 1996). The published test exists 

in two versions that differ only as regards typeface, size and spacing. The larger text 

(14pt Geneva) was used. 

Procedure 

A test page consisting of two A4 pages with two identical passages of the Rate of 

Reading text side by side was positioned in front of the child at a reading distance of 

0.4m. The page was positioned so that no light sources were directly reflected from the 

surface of the overlays. Children were asked to read the passage for 30 seconds and 

told that it was a practice run and that the passage did not make sense. Then, while the 

children were still looking at the passage, they were asked the following visual stress 

questions - "Do the letters stay still or do they move? "; "Are they clear or are they 

blurred (fuzzy, difficult to see)? "; "Are the words too close together or far enough 

apart? "; "Is the page too bright, not bright enough, or just about right"; "Does the page 

hurt your eyes to look at or is it ok? ". The questions reveal symptoms that are generally 

slightly greater in those who show improvements in reading speed with overlays 

(Wilkins et al., 2001). All of the participants in the study were verbal, and gave ready 

responses to the questions asked. No children asked for clarification on any of the 

questions asked. A score of 1 was given for each visual stress symptom expressed 

(these are underlined), whilst others responses scored 0. 

The colour overlays were assembled in a pile in the following order: rose, lime-green, 

blue, pink, yellow, aqua, purple, orange, mint-green. The order was designed to avoid 

complementary colours being placed next to each other. The top overlay (rose) was 
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placed on the left hand side of the test page, covering one of the two passages of text, 

matt side uppermost. Children were asked which side was the clearest and most 

comfortable to see If the white side (passage without overlay) was best, then the 

overlay was removed and replaced with the next overlay from the pile. If the coloured 

overlay was selected as the best, then the overlay was turned over to see whether the 

matt side or the gloss side was preferred. The preferred side was then used for the 

remaining overlays. 

When an overlay was judged to be preferable to the uncovered side, it was positioned 

with best side uppermost and another overlay was placed in the opposite side of the 

page so that both pages were now covered with overlays. The child was then again 

asked which side was the clearest and most comfortable. This process was continued 

each time leaving the best overlay in place and removing the poorer overlay, replacing it 

with the next from the pile. When two colours were deemed indistinguishable both 

colours were noted and one of the colours changed. The other colour was re-introduced 

at the end of the pile. 

Finally, the researcher compared the chosen overlay to no overlay in order to ensure 

child's preferred overlay compared to no overlay to be sure of the best final selection. 

When the children had selected an overlay, researchers asked questions about visual 

stress again. 

Stronger colours in the form of double overlays were next used to see if they made the 

text clearer than a single overlay. Stronger colours of the chosen hue were obtained by 

placing two overlays of the same or neighbouring chromaticity on top of each other to 
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form a double overlay, as described in the Intuitive Overlays instruction booklet. The 

best single overlay was compared with the three associated double overlays and the 

optimal chosen by a process of elimination. If a double overlay was preferred, the 

questions concerning symptoms were repeated a third time. 

RESULTS 

Coloured overlays and rate of reading test 

Three of the controls did not choose an overlay and preferred the text plain. These three 

children were not included in the analysis. Table 2.2 shows the means and standard 

deviations on the rate of reading with and without an overlay. 

Table 2.2: Mean number of words read per minute with and without a colour 

overlay 

Number of words Number of words 
Group Percentage Faster 

read with an overlay read without overlay 

Mean sd Mean sd Mean sd 

Autism (19) 84.63 26.84 74.75 27.34 16.31 18.42 

Controls (16) 64. ) (t )6.35 69.68 30., SS -4.92 12.38 

Previous studies using the Intuitive Colour Overlays have set a 5% increase in reading 

speed as the criteria for significant effects (Wilkins, 2003). Therefore an initial 
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analysis, using a 2*2 chi-square was carried out. This showed that significantly more 

children with autism read faster at the 5% level with the overlays, x2= 12.60; df 1, 

p<. 001. 

A 2*2 ANOVA was then carried out on the data. Group (autism/controls) was the 

between factor and condition (number of words read per minute with and without 

overlays) as the within group factor. The analysis showed no significant main effect of 

condition F(1,33)=1.26, n. s. ) or group F(1,33)=1.91 n. s. ). However there was a 

significant group x condition interaction (F(1,33)=15.47, p<. 05). This is shown in 

figure 2.1 below. 

Figure 2.1: Mean number of words read per minute with and without an overlay 
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This interaction was analysed using paired t-tests. These showed that children with 

autism read significantly more words per minute with than without colour overlays 
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(t(18)=-3.28, p<. 05). The difference was also significant for controls although here 

performance was poorer with overlays (t(15)=2.39, p<. 05). No significant between 

group difference (autism/controls) was found when children read without colour 

overlays (t(33)=. 52, n. s. ), but children with autism read significantly faster than controls 

with colour overlays (t(33)=2.26, p<. 05). As there was a high degree of variability in 

scores, particularly for the children with autism, individual data are shown in figures 2.2 

& 2.3 below. 

Figure 2.2: Words read per minute with and without colour overlays for children 

with autism 
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Figure 2.3: Words read per minute with and without colour overlays for control 

children. 

Although the criteria for a significant increase in reading speed is set at 5%, many of the 

children improved reading speed at higher rates than this. These data are shown in table 

2.3 below 

Table 2.3: The percentage of improvement in reading in the group with autism and 

their controls with a colour overlay 

Numbers of children Percentage improvement reading with colour overlays 

showing improved 

reading with overlays 5-10% 11-20% 21-30% 31-40% 41-50% 

Autism 15 (out of 19) 3 (16%) 6(31%) 0 4(21%) 2 (10%) 

Controls 3 (out of 19) 1 (5%) 1 (5%) 1 (5%) 00 
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Visual stress 

For those children who chose an colour overlay, an average of 1.17 (s. d. 1.043) 

symptoms of visual stress were reported without the overlay compared with 0.69 (s. d. 

1.15) with the overlay. This difference is statistically significant, t(34)=3.022, p<. 05. 

However, children who showed improvements in reading speed that were greater than 

5% reported an average of 1.37 (s. d. 1.25) symptoms of visual stress without the 

overlay compared to 1.05 (s. d. 1.43) with an overlay. This difference was not 

statistically significant, t(18)=1.18, n. s. 

Correlations carried out on the data showed that, for the autism group, there was no 

correlation between BPVS scores and the number of words read per minute with an 

overlay (r=-. 33, n. s. ) or without an overlay (r=-. 29, n. s. ). There was a correlation 

between age and number of words read with an overlay (r=. 55, p<. 05) and without 

p<. 05). For controls, there was no correlation between BPVS scores and 

number of words read per minute with an overlay (r=. 28, n. s. ) and without (r=. 24, n. s. ). 

There was no correlation between age and the number of words read with an overlay 

(r=. 32, n. s. ) and without an overlay (r=. 41, n. s. ). 

There was no marked overall preference for any specific colours within either group. 

The distribution of colour overlays chosen by individual children is included in 

Appendix (i). 
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DISCUSSION 

The findings from this study are the first to investigate the influence of coloured 

overlays on reading in children with autism. The results from the study showed that 

when a 5% increase in reading speed was accepted as the criterion for significant 

improvement, more children from the autism group increased reading speed than 

children from the age- and intelligence- matched control group. However, inspection of 

individual data showed that many of the children with autism increased reading speed at 

higher levels. Thus whilst 79% of the children with autism read more than 5% faster 

with overlays, 67% of these children increased reading speed at rates ranging between 

11% and 50% with overlays. The range of improvement in the small proportion of 

controls who did reach or exceed the 5% improvement criterion was smaller, spanning 

8- 25%. Research using colour overlays with normal populations has shown a 5% 

increase in 20% of individuals (Wilkins et al., 2001), a finding consistent with those 

from the current study where 16% of controls showed an increase of more than 5% with 

overlays. However, the numbers of children within the autism group who improved in 

reading speed using colour overlays was significantly larger, and the range of 

improvement greater than that seen in the control group. 

Although research has shown that children who are poor or slow readers are more likely 

to improve in reading performance when using overlays than children without reading 

difficulties, this tendency is weak (Wilkins et al., 2001). The children with autism in 

the present sample did not show poor reading skills when reading without a colour 

overlay. Indeed, their initial reading scores and those of their age and verbal IQ 

matched controls did not differ significantly. This showed that not only were the groups 
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matched well for reading ability, but that reading scores without an overlay did not 

predict performance with an overlay. There was no correlation for either group between 

BPVS scores and the number of words read with and without an overlay. Therefore, 

verbal IQ did not appear to contribute to improvement with an overlay. However for 

the group with autism, there was a significant correlation between age and number of 

words read with and without an overlay. Children with autism showed better 

performance on this task with increasing age irrespective of using an overlay. 

All the children with autism reported that the coloured overlays made the text clearer, 

whilst none reported a preference for the white (no overlay) text. Sixteen of the 

nineteen children in the control group reported a preference for coloured overlays, and 

three preferred the white text. All children who chose an overlay (both those with 

autism and controls) reported significantly fewer symptoms of visual stress when the 

overlay was used for reading. In the present study, those who read more than 5% faster 

with the overlay also reported fewer symptoms of visual stress with the overlays. 

However, this failed to reach statistical significance. Wilkins et al., (2001) found a 

correlation between the number of symptoms of visual stress and an increase in reading 

speed with an overlay in his sample of normal children. However, no such effect was 

found in the current study. Although none of the participants in the present study asked 

for clarification on any of the visual stress questions, comprehension difficulties are 

characteristic in autism and may have contributed to the non-replication of the Wilkins 

et al's earlier finding. Verbal self-report measures may not be the best method for 

assessing symptoms of visual stress in autism, particularly where there is co-occurring 

intellectual impairment. 
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It was noted that no single colour was chosen more often than any other, and there was 

a great dispersion of colours choices. This is shown in Appendix 1. The most 

frequently selected colour was mint green with 18% of the children (both controls and 

children with autism) selecting this colour. Similarly there was no tendency to choose 

either single or double overlays, and 47% of the total sample, including 57.8% with 

autism and 36% of controls, chose a double overlay. These findings are in line with 

those from other studies showing wide variation in colour choice. For example, Wilkins 

et al., (2001) carried out a large scale study of typically developing children and found 

that overlay choice was widely distributed among the colours available, and that the 

most frequently selected colours (rose and aqua) were chosen by less than 10% of the 

sample. However, it was noted in the study that the participants showed remarkable 

consistency in their colour choice across different testing sessions. As the participants 

will carry out further tasks using colour overlays this will be further discussed. 

It was surprising that the results from the Ishihara and City University colour test 

showed that children who benefit from colour overlays do not have anomalous colour 

vision. However, this finding is in line with previous studies suggesting that the 

prevalence of colour vision anomaly in individuals with Meares-Irlen syndrome is 

similar to that in the general population (Evans et al., 1996; Evans et al., 1996). 

This is the first empirical study to show that reading skills in autism are improved by 

the use of colour overlays. Important outstanding questions relate to whether colour 

overlays will enable children with autism to improve performance on other tasks. A 

question that has significant importance clinically is whether children with autism who 

have marked intellectual impairment will show similar gains when using a colour 
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overlay. Therefore in the following chapter, experiments investigating the use of colour 

overlays on a written comprehension task as well as a non-linguistic visual cognition 

task will be described. 
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CHAPTER THREE 

TESTING SINGLE WORD READING, COMPREHENSION AND VISUAL 

SEARCH WITH AND WITHOUT COLOUR OVERLAYS. 

Summary: In the previous chapter findings showing that the use of coloured overlays 

improved both reading speed and accuracy in children with autism were presented. In 

the first study to be reported in this chapter eighteen of the children with autism who 

had participated in the previous study, together with their age and intelligence matched 

controls, were retested eight months later to assess the reliability and consistency of 

these findings. A short comprehension task was also carried out in order to test whether 

these overlays would improve not only reading speed and accuracy, but also the 

children's understanding of the text. The findings from these studies showed that 76% 

of children with autism read faster on both the reading and comprehension tasks with an 

overlay in comparison to only 6% of controls. In order to test low functioning children 

with reading difficulties with overlays, a visual feature change detection task was 

constructed. The findings from this study showed that a significantly greater number of 

children with autism (73%) completed the task quicker with than without an overlay 

compared to controls (34%). There was no significant effect of intelligence, and 

cognitively impaired children were as likely to improve task performance using an 

overlay as cognitively unimpaired children. The findings are discussed within the 

framework provided by the cortical hyperexcitability theory (Wilkins, 2003) and 

neuropsychological accounts of autism. 
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INTRODUCTION 

In the previous chapter, findings showed that more children with autism than controls 

increased reading speed for single words when using colour overlays. This chapter aims 

to replicate and extend these findings by investigating reading at the sentence level with 

and without overlays. As a large proportion of children with autism also show co- 

occurring intellectual impairments, the question of how their task performance will 

change when using colour overlays is of clinical significance. Therefore cognitively 

unimpaired children with autism (HFA), cognitively impaired children with autism 

(LFA), typically developing children (TD) and children with moderate learning 

difficulties (MLD) will complete a non-verbal task that does not require reading ability 

with and without overlays. 

Research shows that many autistic children acquire some level of reading skill (Lockyer 

& Rutter, 1969; Rutter & Barktak, 1973; Cobrinik 1974; Bartak & Rutter, 1975). 

However, these skills show qualitative differences to those of typically developing 

children (Happe, 1997; Snowling & Frith, 1986). For example, whilst decoding skills 

are in evidence in intellectually unimpaired individuals, they show great variation and 

may be below, equal to or above chronological age norms (Eskes, Bryson & 

McCormick, 1990; Frith & Snowling, 1983; O'Connor & Hermelin, 1994). Children 

with autism have also been found to use phonetic strategies in order to decode words 

(Frith & Snowling, 1983). However, studies typically reveal a pattern of good word 

identification with poor comprehension (Goldberg, 1987; O'Connor & Hermelin, 1994). 
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Single word reading comprehension has been found to be largely intact in autism (Frith 

& Snowling, 1983; Eskes, Bryson &McCormick, 1990), a finding confirmed in 

experiment one in chapter two presented in this thesis. Although many individuals are 

able to use syntactic context (Frith & Snowling, 1985), acquisition of grammatical skills 

tends to be delayed relative to other skills (Tager-Flusberg, 1981; 2001; Tager-Flusberg, 

Calkins, Nolin et al., 1990). Indeed, Kjelgaard & Tager-Flusberg (1999) found that 

only 25% of a sample of 80 children with autism with nonverbal IQ scores in the 

normal range, achieved standardised measures of grammatical ability that were in the 

normal range. The findings from the study also showed that a quarter of the sample 

obtained scores that were more than two standard deviations below the mean (Kjelgaard 

& Tager-Flusberg, 1999). Reading comprehension scores typically tend to be lower than 

reading accuracy scores in autism (Lockyer & Rutter, 1969; Rutter & Bartak, 1973; 

Frith & Snowling, 1983), and it seems likely that grammatical complexity contributes to 

poor comprehension ability. 

Whilst some studies have shown that phonology, semantics and syntax are reading and 

mental age appropriate in autism (Bartolucci, Pierce, Streiner et al., 1976; Frith & 

Snowling 1983; Tager-Flusberg et al. 1990; Minshew, Goldstein & Siegel, 1995), 

difficulties in appreciating `meaning' appear to be universal. In fact, such difficulties 

reflect core diagnostic abnormalities in communication. In one study, Prior and Hall 

(1979) found that their participants with autism selected words that were syntactically 

appropriate but often semantically inappropriate (Frith & Snowling, 1983). However, 

the comprehension of single words showed no abnormalities. In homograph tasks, 

where typically developing participants use sentence context as the primary cue to 

correct pronunciation, participants with autism typically show poor performance (Frith 
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& Snowling, 1983; Happe, 1997). In addition, individuals with autism have been found 

to possess poorer appreciation of humour in comparison to those with typical 

development (Emerich, Creaghead, Gtether et al., 2003). 

Difficulties in using context in autism has been interpreted as providing evidence for 

weak central coherence (WCC) (Frith, 1989; Happe, 1999) outlined in the introductory 

chapter. This theory predicts that autism is characterised by a processing bias that 

favours local features at expense of global, context dependent meaning or Gestalt. 

Individuals may therefore fail to comprehend what they read because of a weak 

tendency to integrate information in order to abstract gist. Other potential explanations 

for this failure include difficulties in switching attention among parts of a task 

(Courchesne, Akshoomof, Townsend et al., 1994; O'Connor & Hermelin, 2004), or 

from the local to the global level (Plaisted et al., 1999; O'Connor et al., 2004). It has 

also been suggested that comprehension can be inhibited by a tendency towards 

distractibility and literalness (Attwood, 1998; Falk-Ross, Iverson, Gilbert et al., 2004). 

In the introductory chapter the underconnectivity theory (Just, Cherkassky, Keller et al., 

2004) was outlined, and this might provide a neurological explanation for why children 

with autism exhibit poor comprehension skills. A number of cortical areas have been 

shown to be activated during sentence comprehension in typically developing 

individuals. For example, Broca's area has been shown to be involved in a number of 

processes that could play an integrating role in sentence comprehension. Such 

processes include syntactic processing (Caplan, Alpert & Waters, 1998; 1999; 

Friederici, Meyer & von Cramon, 2000; Just, Carpenter, Keller et al., 1996; Keller, 

Carpenter & Just, 2001; Ni, Constable, Menci et al., 2000; Roder, Stock, Neville et al, 
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2002); semantic processing (Fiez 1997; Fiez & Petersen, 1998; Gabrieli, Poldrack & 

Desmond, 1998) and working memory functions (D'Esposito, Postle, Ballard et al., 

1999). The area immediately surrounding the posterior left superior temporal sulcus 

(including the superior temporal and middle gyri) has also been shown to be strongly 

involved in sentence comprehension (Just et al. 96; Roder et al. 2002). 

Just et al., (2004) used functional NM to measure brain activation in a group of autistic 

participants and verbal IQ matched controls during sentence comprehension. They 

found that the group with autism showed more activation in Wernicke's (left laterero- 

superior temporal) area and less activation in Broca's area (left inferior frontal gyros) 

than controls. The findings also showed that the functional connectivity was lower 

throughout the cortical language system in autistic participants than in controls, 

suggesting that levels of co-ordination and communication between cortical areas are 

lower in autism (Just et al. 2004). The authors propose that these abnormalities may be 

the locus of WCC in that cognitive strengths tend to be seen on focused tasks such as 

word reading, which may require relatively less coordination among cortical areas. In 

contrast, sentence and story comprehension, which require larger scale integration of 

cortical function, are frequently poor in autism. 

One type of task on which participants with autism consistently show superior 

performance in comparison to controls is the visual search task. Typically, in these 

tasks participants are required to detect a target item that differs from distractor items 

along a single dimension. Such an example would be to search for red X's among red 

T's and green X's. In one study using this paradigm, children with autism showed 

superior performance in comparison to age and intelligence matched controls (Plaisted, 
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O'Riordan & Baron-Cohen, 1998). The issue of superior visual search will be further 

investigated in a change detection task to be presented in this chapter. 

The underconnectivity model (Just et al., 2004) predicts that any facet of psychological 

or neurological function that is dependent on the coordination or integration of brain 

regions is susceptible to disruption, particularly when the computational demands of the 

coordination are large (Just et al., 2004). A number of neurobiological findings of brain 

dysregulation in autism have been reported that could be a basis of the altered pattern of 

tMRI activity and functional underconnectivity in autism. These include structural 

abnormalities involving total brain volume, the cerebellum and, recently, the corpus 

callosum. The evidence in favour of disturbed neural networks in autism has implicated 

dysfunction in both cortical and subcortical areas, including temporo-parietal cortex, the 

limbic system, the cerebellum, as well as prefrontal regions (Brambilla, Hardan, Ucelli 

di Nemi, et al., 2003; Aylward, Minshew, Field et al., 2002; Bailey, Le Couteur et al., 

1995; Carper Moses, Tigue et al., 2002; Courchesne, 2002; Lainhart, Piven, Wzorek et 

al., 1997). 

The findings from these studies provide evidence for wide ranging neurological 

abnormalities in autism. The question to be asked here is how the findings from chapter 

one, showing improvements in reading when using colour overlays, can be interpreted 

within the context of these reported abnormalities. According to the cortical 

hyperexcitablity theory (Wilkins, 2003) outlined in the introduction, self selected colour 

overlays result in improvements in reading in individuals with central nervous system 

disorders, because self selected colours reduce activation in overactive areas. It seems 

plausible to suggest that the extent of overactive areas may be more or less 

67 



circumscribed across disorders and may be fairly widespread in autism. Indeed, research 

suggests sensory abnormalities in autism are not limited to the visual system (Cesaroni 

& Garber, 1991; Dunn, 1999; Kientz & Dunn, 1997; Williams, 1999). 

The experiments presented in this chapter will attempt to address two main questions. 

First, given the numbers of high functioning individuals with Autistic Spectrum 

Disorder (ASD) currently attending mainstream schools and enrolled in tertiary 

education (Burack, Root & Zigler, 1997; Gerhardt & Holmes 1997; O'Connor & Klein, 

2004) the question of whether overlays might facilitate reading performance beyond the 

single word level is of considerable interest educationally. A second question is 

whether the use of colour overlays might benefit children with autism and intellectual 

impairment, who are not able to read and were therefore not tested on the Rate of 

Reading task in experiment one. The first two studies to be presented will attempt to 

replicate and then extend previous findings of improvements in reading when using a 

coloured overlay. The third experiment will use a non-verbal task that is appropriate for 

use with lower functioning children who may not be able to read. 

EXPERIMENT TWO: TESTING THE RATE OF READING: A REPLICATION 

Participants 

Eighteen children with ASD participated in the study. They were aged between 9 years 

0 months and 15 years and 10 months (mean 12 years and 6 months) and attended 

schools for which a formal diagnosis of ASD was the criterion for entry. Their scores 

on the British Picture Vocabulary Scale, (BPVS) (Dunn et al., 1997) ranged between 47 

and 87 (mean 64.5). Typically developing (TD) control participants were individually 
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matched to the children with autism for chronological age, gender and verbal IQ as 

measured by the BPVS. The children's psychometric and age data are shown in Table 

3.1. 

Table 3.1: Age, Verbal 10 data for children with autism and controls 

Group Age BPVS 

Mean sd Mean sd 

Children with Autism 12.3 (2.13) 64.50 (11.20) 

(N=18) 

TD (n=18) 12.1 (1.88) 68.30 (11.26) 

Materials 

The materials were the same as used in chapter one. These included the Intuitive 

Overlays (Wilkins 1994) and the Rate of Reading Test (Wilkins et al., 1996). The 

published test exists in two versions that differ only as regards typeface, size and 

spacing. Again in this study the larger text (l4pt Geneva) was used. 

Procedure 

The Procedure was exactly the same as used in chapter one. 
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Results 

The means and standard deviations for reading rates with and without colour overlays 

are shown in table 3.2 below. 

Table 3.2: Means and standard deviations for reading rates with and without 

colour overlays for children with autism and controls 

Group Words read per minute Words read per minute 

with colour overlay without colour overlay 

Mean sd Mean sd 

Autism=18 96.9 33.7 83.8 32.2 

Controls=18 68.6 17.4 69.8 19.8 

A 2*2 ANOVA with Group (autism/controls) as the between group factor and condition 

(number of words read per minute with and without overlays) as the within group factor 

revealed a significant main effect of condition (F(1,34)=20.08, p<. 001), a significant 

main effect of group (F(1,34), =5.74, p<. 05) and a significant group x condition 

interaction (F(1,34)=29.69, p<. 001) which is shown in figure 3.1 below. 

70 



Figure 3.1: Group x condition interaction 
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This interaction was analysed using paired t-tests with Bonferroni adjustments. These 

showed that children with autism read significantly more words per minute with than 

without an overlay (t(17)=6.23, p<. 001), whereas there was no significant difference 

across conditions for controls (t(17)=-. 802, n. s. ). The children with autism read 

significantly faster than controls both with colour overlays (t(34)=3.17, p<. 001) and 

without overlays (t(34)=1.57, p<. 05). 

Again a 5% increase in reading speed as the criteria for significant effects was set 

(Wilkins, 2003) and an initial analysis, using a 2*2 chi-square, was carried out in order 

to determine whether more children with autism would achieve criteria than controls. 

This showed that significantly more children with autism read faster at the 5% level 

with the overlays than controls(x2=16.00; df=1, p<. 001). Again, inspection of 

individual data showed that many children improved at higher levels than this. These 

data are shown in table 3.3 below. 
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Table 3.3: The degrees of improvement in reading in the group with autism and 

their controls with a colour overlay 

Numbers of children Degrees of improved reading with colour overlays 

showing improved 

reading with overlays 5-10% 11-20% 21-30% 31-40% 41-50% 

Autism (n=15) 5 (28%) 2 (11%) 5 (28%) 2 (11%) 1 (6%) 

(83% of sample) 

Controls (n=3) 2 (11%) 001 (6%) 0 

(17% of sample) 

As can be seen from table 3.3,56% of the children with autism improved reading speed 

at a level that was greater than 10% whereas this was only the case for 6% of controls. 

There was no significant between group difference in the number of symptoms of visual 

stress reported with and without an overlay (t(34)=0.01, n. s. ). Data from the participants 

with autism did not show a significant difference in the number of stress symptoms 

reported in overlay/no overlay conditions (t(17)=2.06, n. s. ), and this was also true for 

controls (t(17)=1.71, n. s. ). 

Correlations carried out on the BPVS scores and the number of words read per minute 

with an overlay (r=-. 38, n. s. ) and without an overlay (r=-. 29, n. s. ) were not significant 

for the autism group. However, as for experiment one there was a significant correlation 

between age and the number of words read with an overlay (r=. 68, p<. 05) and without 

an overlay (r=. 62, p<. 05) for this group For controls there was no significant 
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correlation between BPVS scores and number of words read per minute with an overlay 

(r=. 44, n. s. ) although this was significant in the no overlay condition (r=. 49, p<. 05). 

There was no correlation between age and the number of words read with an overlay 

(r=. 26, n. s. ) or without an overlay (r=. 34, n. s. ) for controls. 

EXPERIMENT THREE - COMPREHENSION TASK 

Participants 

With the exception of one child from the ASD group and one from the TD group, the 

participants were the same as for experiment two. 

Materials 

The intuitive overlays (Wilkins 1994) (as described in experiments one and two) were 

again used. The SCOLP (Baddeley, Emslie, Nimmo-Smith, 1992) is a language 

comprehension test that requires children to read lists of sentences (eg "fruit grows on 

trees", "we eat shoes") and judge whether they are true or false. The test included four 

sheets of text with 20 sentences on each one. 

Procedure 

The overlay selection procedure, as described in experiment one, was repeated using the 

sheets of text from the SCOLP. The SCOLP included four lists of words (A list 1 and 

2; B list 1 and 2) and children either completed both parts of list A with an overlay and 

both parts of list B without an overlay or visa versa. The order was randomised across 

and within groups. The children's correct responses and completion speed for each were 
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summed. Visual stress symptom questions (see experiment one) were again 

administered. 

Results 

The means and standard deviations for correct responses to the sentences task are shown 

in table 3.4. 

Table 3.4: Means and standard deviations for correct responses for experiment 

three. 

Group With a colour overlay 

Mean sd 

Without a colour overlay 

Mean sd 

Autism 38.2 (2.4) 38.3 (2.5) 

Controls 38.8 (2.2) 38 (4.2) 

*Maximum number correct = 40 

A 2*2 ANOVA was carried out on the data. Group (autism/controls) was the between 

factor and condition (scored with and without overlays) as the within group factor. The 

analysis showed no significant main effect of condition F(1,32)=1.90, n. s. ) or group 

F(1,32)=1.94, n. s. ), and there was also no significant interaction (F(1,32)=0.34, n. s. ). 

The means and standard deviations for time taken to complete the comprehension task 

are shown in table 3.5. 
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Table 3.5: Time taken to complete the comprehension task with and without 

overlays 

Group Time completed Time completed 

(seconds) With an (seconds) Without an 

Overlay Overlay 

Mean Sd Mean Sd 

Autism 182 (83.9) 202 (110.5) 

Controls 240 (68.3) 239 (74.1) 

A 2*2 ANOVA with group (autism/controls) as the between subjects factor and 

condition (time taken to complete task in seconds with and without overlays) was the 

within group factor. The analysis showed no significant main effect of condition 

(F(1,32)=2.24, n. s. ) or group (F(1,32)=2.18, n. s. ) and there was also no significant 

group x condition interaction (F(1,32)=2.74, n. s. ). 

Although ANOVA failed to reveal a significant difference in mean completion times 

between the groups when using a colour overlay, inspection of the data showed that the 

pattern of performance within the groups was very different. This showed that fourteen 

of the seventeen children with autism (82%) completed the comprehension task faster 

with an overlay, whereas this was the case for only six of the seventeen children (35%) 

in the control group. A 2*2 Chi square confirmed that significantly more children from 

the autism group completed the task faster with colour overlays than from the control 

group, (x2= 7.77; df=1, p<. 05). 
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In experiment one, the initial criteria for comparing differences was set at 5% 

improvement in reading with overlays. Therefore, in order to maintain consistency 

across experiments, analysis of the data for numbers of children showing a greater than 

5% increase in completing the SCLOP with a colour overlay was carried out. As table 

3.6 below shows, 42% of children from the autism group completed the task over 10% 

faster with the overlays in comparison to 18% of the controls. However, the difference 

at the 5% level failed to reach significance (x2= 1.12; d 1, p=. 29). 

Table 3.6: The degrees of improvement on the comprehension task in the group 

with autism and their controls with a colour overlay 

Numbers of children Degrees of improved reading with colour overlays 

showing 

improvement on 5-10% 11-20% 21-30% 31-40% 

comprehension task 

with overlays at 5% 

level or more 

Autism 8 (out of 17) 1(6%) 4(24%) 2(12%) 1 (6%) 

(47%) 

Controls 5 (out of 17) 2(12%) 3(18%) 00 

(29%) 
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There was no significant between group difference in the number of symptoms of visual 

stress reported with and without an overlay (t(32)=-. 15, n. s. ). There also was no 

significant difference in the number of symptoms of visual stress reported across the 

two conditions in the autism group (t(16)=1.28, n. s. ). However, the control group 

reported significantly fewer symptoms without than with the overlay (t(16)=2.49, 

p=. 05). 

Correlations carried out on the data showed that for the autism group, there was no 

correlation between BPVS scores and time taken to complete the task with an overlay 

(r=-. 06, n. s. ) or without an overlay (r=-. 08, n. s. ). There was no correlation between age 

and the time taken to complete the task with an overlay (r=. 14, n. s. ) or without an 

overlay (r=. 005, n. s. ). For the controls there was no correlation between BPVS scores 

and time taken with an overlay (r=-. 047, n. s. ) or without an overlay (r=-. 034, n. s. ). 

There was no correlation between age and the time taken with an overlay (r=-. 39, n. s. ) 

but this was significant in the no overlay condition (r=-. 59, p<. 05). 

COMPARING PERFORMANCE ACROSS EXPERIMENTS TWO AND THREE 

This showed that eight of the seventeen children with autism (47%) and two of the 

seventeen control children (12%) improved performance speed by more than 5% on 

both the rate of reading and the comprehension tasks. This difference was statistically 

significant (x2= 5.10; df 1, p=. 05). The consistency of colour choices across the two 

testing phases was high, with 94% of the children with autism and 88% of the controls 

choosing the same colour on both occasions. 
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EXPERIMENT FOUR: PERFORMING A VISUAL CHANGE DETECTION 

TASK WITH AND WITHOUT COLOUR OVERLAYS. 

Participants 

As a major aim of this study was to test lower-functioning children with ASD and the 

linguistic demands in experiment four were low, participants were matched to controls 

on the basis of non-verbal IQ measured using Ravens Matrices and age. Subject data 

are shown in table 3.7. 

Table 3.7: Age and 10 data for participants in experiment four 

Group Age 

Mean sd 

Ravens Matrices 

Mean sd 

ASD GROUP (n=26) 12.3 2.21 75.8 16.23 

HFA (n=13) 
12.2 2.31 89.6 11.61 

LFA (n=13) 
12.4 2.17 61.85 5.29 

Control Group (n=26) 12.3 2.11 74.23 15.25 

TD (n=13) 
12.1 2.32 86.0 13.24 

MLD (n=13) 
12.4 1.96 62.4 3.02 

Materials 

The intuitive overlays (Wilkins, 1994) were again used in experiment four. 70 pictures 

of everyday objects, each with similar levels of detail and familiarity, were taken from 
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the Snodgrass and Vanderwart (1980) picture scale. Each picture was copied onto an 

A4 sheet of paper, seven times in a row with a large gap between the first (target 

pictures) and the remaining pictures, which were evenly spaced with smaller gaps. Five 

of the six non-target pictures were altered so that a part of the pictures was either 

deleted, added-to or shaded 

ý'' i  U 

,n 

An example is shown in Figure 3.2 below. 

  

Figure 3.2 - Change Detection Task - Sample 

In order to avoid order effects, the position of the picture that was identical to the target 

was randomised within stimulus sets. As for experiment 3, the stimuli were arranged in 

two sets (Al & 2, B1& 2) and children completed one set with and one set without an 

overlay. As for experiment three, this was randomised within groups. The procedure 

for choosing an overlay was the same as for experiments one and two, except that the 

picture stimuli replaced the pages of text. The children were instructed to find the 

picture that was identical to the target picture as quickly as possible. Accuracy scores 

and speed data were recorded and were summed across stimulus sets. 
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Results 

The means and standard deviation for correct responses for experiment four are shown 

in table 3.8 

Table 3.8: Mean and Standard Deviations for Accuracy scores on Change 

Detection Task 

Group With a colour overlay 

Mean sd 

Without a colour overlay 

Mean sd 

Autism (N= 26) 26.8 4.4 26.4 3.9 

Controls=26 26.1 3.3 25.7 3.2 

*Maximum number correct =30 

A 2*2 ANOVA was carried out on the data with group (autism/controls) as the between 

subjects factor and condition (number of pictures correctly identified with and without 

overlays) was the within group factor. The analysis showed no significant main effect of 

condition (F(1,50)=1.25, n. s. ) or group (F(1,50)=. 48, n. s. ) and no significant interaction 

(F(1,50)=. 025, n. s). 

The means and standard deviations for time taken to complete the task are shown in 

table 3.9 below. 
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Table 3.9: Mean and standard deviations for time taken to complete change 

detection task for control group and group with ASD. 

Group Time taken (seconds) Time taken (seconds) 

with colour overlay without colour overlay 

Mean sd Mean sd 

Autism (N=26) 112.91 56.95 135.67 60.05 

Controls (N=26) 170.28 92.64 148.74 89.59 

A 2*2 ANOVA was carried out on the data. Group (autism/controls) was the between 

group factor and condition (completion times with and without overlays) was the within 

group factor. This analysis showed no significant main effect of condition 

(F(1,50)=. 009, n. s. ) or group (F(1,50)=3.02, n. s. ). However there was a significant 

group x condition interaction (F(1,50)=12.170, p<. 001) which is shown in figure 3.3 

below. 

Figure 3.3: Group by condition interaction for change detection task 
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The significant interaction was analysed using paired t-tests. This showed no significant 

between group difference (autism/controls) was found when children completed task 

without colour overlays (t(50)=0.61, n. s. ), but children with autism completed the task 

faster than controls with colour overlays, (t(50)=-2.69, p<. 05). There was no significant 

difference in time completed with and without an overlays for the autism group 

(t(25)=. 83, n. S) or for the controls (t(25)=. 75, n, s. ). 

As was the case for experiments one and two, a significantly greater number of children 

with ASD than controls completed the task 5% faster with an overlay than without one, 

and this was significant (x2= 7.74; dgl, p<. 05). Within the ASD group there were no 

significant differences in the number of high functioning and low functioning children 

with autism who increased speed when using an overlay (x2=. 016; dgl, n. s). There 

was also no intelligence dependent difference (TD and MLD) within the control group 

(x2= 
. 170; df--1, n. s. ). 

Correlations were carried out on the data. These showed that for the autism group, their 

scores on the Raven's Matrices scores did not correlate with time taken with an 

overlay (1----. 068, n. s. ) or without an overlay (r=-. 027, n. s. ). There was no correlation 

between age and the time taken with an overlay (r=-. 24, n. s. ) or without an overlay (r=- 

. 
30, n. s. ). For the controls, there was no correlation between scores on the Raven's 

Matrices scores and time taken with an overlay (r=-. 01, n. s. ) and without an overlay (r=- 

. 
11, n. s. ). There was also no significant correlation between age or the time taken 

without an overlay (r=-. 35, n. s. ), although the correlation between age and time taken 

with an overlay was significant (r=-. 49, p<. 05). 
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DISCUSSION 

The findings from the experiments presented in this chapter confirmed the findings 

from experiment one in that they showed significantly more children from the autism 

group than from the control group increased their performance speed on the rate of 

reading and comprehension tasks when using colour overlays. Thus, 811/o of children 

with autism increased speed on the sentence classification task, and of these 76% 

increased speed on single word reading as well. In contrast, 11% of controls showed a 

significant increase in speed on the rate of reading test, 35% increased speed on the 

comprehension test and of these 6% read faster on both. Importantly, increases in speed 

did not co-occur alongside a reduction in accuracy in either group. These findings 

confirm that colour overlays are of significant therapeutic benefit for children with 

autism. In experiment four that had been designed for use with cognitively lower 

functioning children, 69% of these reduced task completion times with the overlays, a 

finding that mirrored the results from the high functioning children with autism, 76% of 

whom also reduced task completion times. Within the control group, a similar 

proportion of MILD and TD children reduced reaction times with overlays (MLD = 

38%; TD = 30%), although the effect was far smaller than had been recorded for the 

autism groups. Indeed, the frequency improvement in the control group was consistent 

with that found in previous studies with typically developing children (Wilkins et al., 

2001). Again, no speed accuracy trade off was seen in experiment four for either 

participant groups. 

Although the group with autism was matched to the control group for verbal 

intelligence as well as age and gender in experiments two and three, it was noted that 
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the mean number of words read per minute was higher for the autism group in 

experiment two, even without a colour overlay. However it seems unlikely that single 

word reading is superior in children with autism. Previous research has shown that 

single word reading comprehension is unimpaired in autism (Eskes et al., 1990; Frith & 

Snowling, 1983; Prior & Hall, 1979), and it may be the case that they can outperform 

typically developing children when words are presented without context. Before 

beginning the Rate of Reading task, the children were told that the passage they were to 

read did not make sense and they were also given practice trials. However, reading 

passages of single words without context may be more difficult for typically developing 

children, and it was noted that several participants were unenthusiastic about 

completing the test. A weaker reliance on context may also have influenced the 

findings from experiment three. The comprehension test used in this experiment 

(SCOLP, Baddeley et al., 1992) included "silly" sentences and children had to judge 

whether or not these were correct. Research has shown that individuals with autism 

have difficulties in appreciating humour (Emerich et al., 1993), and this would have 

meant that they would be more likely to judge the correctness or incorrectness of the 

sentences without distraction. Thus, whilst difficulties in sentence comprehension are 

commonly noted in autism (O'Connor & Hermelin, 1994; Patti & Lupinetti, 1993; 

Happe 1997), performance might more nearly equal that of typical children in situations 

where a weaker tendency to process global context conveys an advantage. Children 

without autism would be more likely to process the humorous aspect of the stimuli, and 

this may have been distracting in some cases. Indeed some of the participants in the 

control group did remark on the "silliness" of some of the sentences. However the 

accuracy scores for both groups were very high, and it may be the case that group 

differences would have emerged on a more difficult task. The main aim of the 
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experiment was to ascertain whether or not overlays could improve reading 

comprehension in children with autism, and the findings of increased reading speed 

together with a high level of accurate responses suggest that this is the case. 

One important finding from the studies was that 94% of the children with autism and 

88% of control children selected the same coloured overlay at both times of testing 

(experiments two and three). Wilkins (2003) has proposed that visual stress and 

distorted perception, sometimes reported in autism and disorders affecting the central 

nervous system, occur when a spread of activation within the cortex causes cells to fire 

inappropriately. As this theory predicts that the locus of hyper-excitability varies across 

individuals, and only specific colour filters can change the distribution of the firing, the 

process of selecting an overlay was an important aspect of the experiments presented in 

chapters two and three. In a previous study using colour overlays, a significant 

correlation between reported symptoms of visual stress and reading improvement with 

an overlay was reported (Wilkins et al., 2001). However, in the current studies reported 

levels of visual stress symptoms were low and there was no significant difference 

between the autism and control groups. Evidence presented in the introduction to the 

thesis (e. g. Gillberg & Coleman, 1992; White & White, 1987) and the findings from 

experiment one presented in chapter two strongly suggests that at least some individuals 

with autism experience visual stress and perceptual distortion. It may be then be the 

case that the methods previously used to obtain this information are unsuitable for use 

with children with autism. Clearly, alternative methods for evaluating visual stress in 

individuals with communication difficulties should be developed. 
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In experiment four participants completed a simple change detection task. Previous 

studies testing visual search have frequently found superior performance in autism 

relative to controls (e. g. Plaisted, 2001). However in the current study there were no 

group differences in accuracy scores. The analysis of the time to complete the task 

showed a significant interaction whereby participants with autism did not complete the 

task faster than controls in the `no overlay' condition, but were significantly faster than 

them when using an overlay. The chi square analysis showed that more children from 

the autism group than the control group increased speed using an overlay, and 

intellectual status did not show any significant effects. Thus, 76% of participants with 

FIFA, 69% with LFA, 30% of TD controls and 38% of MELD controls completed the 

task faster in the overlay condition. 

Taken together, the findings from the three studies presented in this chapter show that 

more children with than without autism increase reading and visual processing speed 

without costs to accuracy when using colour overlays. However, it was clear that not all 

children with this diagnosis showed this effect. It also appeared, from the correlation 

analyses, that better task performance with overlays did not occur more frequently in 

children within particular age ranges or with particular ability profiles (e. g. on Raven's 

matrices/BPVS). The only factor that was significant in the various analyses was 

diagnosis. The results from the City and Ishihara colour tests did not identify more 

colour vision abnormalities in the children with autism than controls. However, several 

recent group studies have reported a high incidence of sensory abnormalities, as 

measured by the Sensory Profile (Dunn, 1999), in children with autism (Dawson, 1983; 

Mayes & Calhourn, 1999; Myles et al., 2000). The relationship between sensory 
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abnormalities measured by this test and other aspects of visual processing, with and 

without colour overlays, will be explored in a case study in chapter six. 

Whilst the findings from the studies presented in this chapter show that children with 

autism do improve task performance with colour overlays, the question of why this 

should be the case remains unresolved. In the introductory chapter, the magnocellular 

deficit theory (Robinson & Foreman, 1999) and cortical hyper-excitability theory 

(Wilkins, 2003) were outlined. The first theory predicts that abnormalities in the 

magnocellular pathway will result in conflicting signals being received by the visual 

cortex (Gregory, 1994; Robinson & Foreman, 1999). As previously suggested, 

magnocellular abnormalities have been reported in dyslexia (Galaburda 1993; lovino et 

al., 1998; Wilkins 2003), migraine (Wilkins 2003) and autism (Milne et al., 2002; 

Spence 2002). These are all groups that have been found to benefit from using colour 

filters or overlays (Wilkins 2003; Ludlow, Wilkins & Heaton, in press). However not 

all individuals who suffer from these conditions benefit from the use of overlays (Kriss 

2002), and no study has yet identified a particular magnocellular abnormality in Meares 

Irlen syndrome (Evans et al., 1995; 1996; Simmers et al., 2001). 

In the introduction the cortical hyperxcitability hypothesis was outlined and the question 

to be asked here is whether this theory can account for the findings presented in 

chapters two and three. The assumption that the cortex is hyperexcitable in autism is 

plausible given research showing abnormalities of cortical networks (Brambilla et al., 

2003; Minshew et al., 2002; Bailey et al., 1993; Carper et al., 2002; Courchesne, 2003; 

Lainhart et al,. 1997), and less co-ordination and communication between cortical areas 

(Just et al., 2004). However, links between these research findings and cortical 
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hyperexcitability have yet to be precisely outlined. Moreover, the behavioural 

consequences of atypical brain development in autism are currently not well understood, 

and the question of which of the various neuropsychological theories best accounts for 

the findings reported in this chapter remains open. An important question that can be 

addressed in experimental studies of autism, however, is whether atypical sensory 

processing in autism will result in abnormalities in processing colour information. This 

will therefore be tested in experiments investigating colour naming, colour 

discrimination and colour categorisation. 
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CHAPTER FOUR 

INVESTIGATING COLOUR PERCEPTION AND NAMING, COLOUR 

DISCRIMINATION AND COLOUR CATEGORISATION IN AUTISM 

Summary: Studies into colour processing in children with autism, intellectual 

impairment and typical development are presented in this chapter. The first of these 

tested colour naming and colour comprehension in autism and the findings showed that 

these abilities were largely unimpaired in the majority of children with this disorder. 

Experiment six tested the hypothesis that perceptual discrimination would be enhanced 

in autism. However the findings from the study failed to support the hypothesis, and 

group differences reflected intellectual level rather than diagnosis. Experiment seven 

sought to identify category boundaries for the different groups of participating children. 

Here, participants were required to label verbally colour chips drawn from the 

blue/green and blue/purple ranges. The findings from the study found that the children 

in the autism groups showed less consensus about which chips marked category 

boundaries. Categorical colour processing was further investigated in experiment eight. 

Here participants were required to identify the least similar of a group of three colour 

chips. The findings from this study showed that high and low functioning autistic 

participants differed from controls and from each other in defining category boundaries. 

For the intellectually unimpaired participants, category boundaries were narrower than 

for those of their typically developing matched controls, and for the cognitive impaired 

participants with autism these were looser of their mild learning difficulties matched 

controls. Theoretical accounts of autism, proposing that perceptual processing is 
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enhanced and results in narrow category boundaries, were rejected in favour of an 

account that emphasises the role of language in shaping colour perception. 

INTRODUCTION 

In chapters two and three it was shown that the use of a colour overlay greatly improved 

the performance of significantly more children with autism than matched controls on 

reading, comprehension and visual search tasks. It was concluded that the most likely 

explanation for why these overlays work is cortical hyper-excitability in autism. In the 

previous two chapters, the children with autism did not appear to show any colour 

abnormalities as evidenced by results from the City (Fletcher, 1998) and Ishihara 

(Ishihara, 1970) colour tests. However, it was still unclear whether abnormalities would 

be found on other colour tasks. In the studies to be presented in this chapter, children 

with autism and age and intelligence matched controls completed a colour naming task, 

a colour discrimination task and colour categorisation tasks. 

Evidence from both autobiographies and clinical accounts strongly suggests that 

idiosyncratic reactions to colour are characteristic abnormalities in autism (Williams, 

1992; White & White, 1991). Indeed, in response to these claims, various therapeutic 

interventions have been developed (Howlin, 1996; Irlen, 1991). Given this, it is 

surprising how little research into colour abnormalities in autism has been carried out. 

Research into colour processing in typical populations shows that it is categorical in 

nature. Berlin & Kay (1969) were the first to propose that there exist at most, eleven 

universal basic perceptual colour categories onto which colour terms are systematically 

mapped. The eleven basic colour categories that they identified are white, black, red, 
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green, yellow, blue, brown, pink, purple, orange and grey. Each of these colours is 

defined by a focal region representing the typical example of its category. The 

perceptual focal point for each colour category is remarkably concordant across 

languages that use that colour term. (Heider, 1972; Harkness, 1973; Collier, 1976; 

Uchikawa & Boynton, 1987; Boynton, Fargo, Olson et al., 1989; Uchikawa & Shinoda, 

1996; Uchikawa & Sugiyama, 1993), and research has shown that with increasing 

distance from these focal colours and especially towards category boundaries, colours 

are less easy to name (Laws, 2002). 

Cross-cultural studies have shown that focal colours are recognised more accurately and 

rapidly, and become associated with colour names more reliably than nonfocal colours 

(Heider, 1972; Rosch, 1973), and developmental studies have shown that children are 

more likely to select and are better at matching (Heider, 1971) comprehending and 

naming (Andrick & Tager-Flusberg, 1986), focal colours than non-focal colours. It has 

also been shown that young infants attend significantly longer to hue exemplars at the 

centres of the four basic hue categories (red, blue, green, yellow), than to boundary 

points between hues along the spectral continuum (Bornstein, 1975). 

Some research suggests that infants have perceptual colour categories that are like the 

categories of adults (Bornstein, Kessen & Weiskopf, 1976; Teller, Peeples & Sekel, 

1978). In fact, similar perceptual colour categories have been shown in animals (De 

Valois, Morgan et al., 1974) and in adults with extremely limited colour lexicons 

(Heider & Olivier, 1972). Thus before children engage in the learning of colour terms, 

they already possess colour percepts onto which colour concepts can be mapped 

(Pitchford & Mullen, 2003). Within the first few weeks of life, infants can distinguish 
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colour differences (Allen, Banks & Narcia, 1993; Maurer & Adams, 1987; Morrone, 

Burr & Florentini, 1993; Teller, 1998; Teller & Bornstein, 1985), and by four months 

they show categorical perception for the four primary colours (Bornstein, Kessen & 

Weiskopf, 1976; Catherwood, Crassini & Freilberg, 1989) and some secondary colours 

(Franklin & Davies, 2004). 

Colour is perceived as a number of discrete categories. Categorical perception (CP) 

occurs when stimuli from within a category are perceived as more similar than stimuli 

that fall over a category boundary (between category stimuli), even when stimulus 

separation sizes from within and between category stimuli are equal (Franklin, Clifford, 

Williamsonet al., 2005; Hamad, 1987). 

The extent that language influences colour processing is controversial, and it has 

variously been suggested that colour categories are hardwired (Bornstein et al., 1976; 

Franklin & Davies, 2003), that they can be learned (Ozgen & Davies, 2002), that they 

are shaped by verbal labels (Roberson & Davidoff, 2000), or are based on low level 

visual processes (Davies, Daoutis, Pilling et al., 2003; cited in Pilling & Davies, 2004; 

Kawai, Uchikawa & Ujike, 1995). 

Linguistic relativists argue that categorical perception of colour is constructed through 

language (Whorf, 1956). In contrast universalists argue that the two systems 

(language/perceptual) map onto the pre-existing perceptual categories, but not all 

languages mark the same perceptual categories (Pilling & Davies, 2004). 
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The universalist theory is supported by evidence that colour categories are present 

before language and therefore may be innate (Bornstein et al., 1976; Catherwood, et al., 

1989). Recently, Franklin, Pilling, and Davies (2005) found, by recording infants' eye 

movements on a target detection task, that infants as young as four months responded to 

colour stimuli categorically. This implies that colour categorisation is truly perceptual. 

Categorical effects are also shown by adults on perceptual tasks such as visual search 

tasks, where target pop out is thought to occur too quickly for a verbal strategy to be 

used (Davies et al., 2003; cited in Pilling & Davies; 2004; Kawai et al., 1995). Rosch 

(1973) in particular has argued that universal categories are each based on the same 

focal colours regardless of the number of terms in the speaker's language. 

Although the brain structures responsible for colour categories have yet to be identified, 

cortical structures beyond the visual cortex are believed to be involved. It is possible 

that if categorical perception is hardwired, then these structures are tuned by the 

chromatic environment (MacLeod, 2002; Yendrikhovskg, 2001) such that by four 

months of age, adult-like categorical perception is in evidence. It is also possible that 

infant environments in the industrialised world are dominated by artefacts such as toys, 

clothes and pictures, in saturated primary colours that are close to category prototypes 

(Rosch, 1972). This may contribute to categorical perception in children as young as 

four months (Franklin, Clifford, Williamson et al., 2005). 

The linguistic relativity theory leads to the prediction that categorical perception varies 

with language. Cross-cultural studies of categorical perception in adults lend support to 

this prediction (Kay & Kempton, 1984; Roberson, Davies & Davidoff, 2000). Most 

tests of the linguistic relativity hypothesis (LRH) involve a memory component and are 
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particularly prone to direct language strategies (Kay & Kempton, 1984; Pilling, 

Wiggert, Ozgen & Davies, 2003; Roberson & Davidoff, 2000). For example, a target 

colour could be remembered as a colour name, and recognition achieved by matching 

the retained name to the names of the colours in the recognition array. However CP is 

also found using simultaneous same-different tasks (Ozgen & Davies, 2003) and visual 

search tasks (Daoutis, Franklin, Riddett et al., 2004; Pilling & Davies, 2004; Franklin, 

Pilling & Davies, 2004), where the memory load is minimal and labelling does not 

facilitate performance. The finding that cross category discrimination (stimuli having 

different names) is more accurate than within category discrimination also supports a 

direct language account (Pilling & Davis, 2004), as do findings showing that categorical 

perception can be eliminated by verbal interference (Roberson & Davidoff, 2000). 

Although the physiological basis of colour vision is thought to be the same for humans 

with normal trichromatic colour vision (Mollan, 1999), there is considerable diversity in 

the ways that different languages segment the continuum of visible colour (Roberson, 

Davidoff, Davies et al., 2004). For example, the Dani of New Guinea have just two 

basic colour terms (BCT) (Heider 1972), most southern African languages have four or 

five BCT, and English has eleven BCT (Davies & Corbett, 1997). If the categorical 

effect is due to language, then differences should occur across the regions of colour 

space that are differently labelled by the speakers of the languages under investigation 

(Davies & Corbett, 1997). 

Kay and Kempton (1984) compared Tarahumara (individuals from Mexico) whose 

language had a single term for the colour blue and green, with speakers of English on a 

`triads' task. Participants were asked which of three colours from the blue-green border 
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region was least similar to the other two. When two of the colours were both within 

either the blue or green category and the third chip was in the other, differences across 

groups appeared. The English speakers were more likely to choose the third chip (the 

one across their category boundary) as most different. 

In another study looking at the effects of language, speakers of English, Russian and 

Setswana, who differ in the number of BCT they use and in how the blue/green region 

is categorised, were compared on a colour sorting task where colours were to be 

grouped for similarity. The English had eleven BCT (Berlin & Kay 1969), the Russians 

had twelve BCT (one more than Berlin & Kay's (1969) `theoretical maximum'), and the 

Setswana had five BCT. A striking finding that was inconsistent with the linguistic 

relativity theory was the similarity across groups. However, the Setswana, who have a 

single term for blue and green ('botala'), were more likely to group blue colours with 

green colours than either the Russians or the English. But the Russians who have two 

basic colour terms for blue (light and dark) were no more likely than English speakers 

to separate light and dark blue (Davies & Corbett, 1997). Similar effects of language on 

grouping were found in a detailed exploration of boundary position within the 

blue/green region. 

Pilling & Davies (2004) compared speakers of English and Ndonga (from rural northern 

Namibia) on three tasks. These languages differ in their number of basic colour terms 

and consequently in the positions of their category boundaries. The language Ndonga 

has six BCT with no basic terms for orange, pink and purple. The stimuli were chosen 

to exploit the language difference. On the sorting task (sorting into similarity groups) 

for each language, nominally similar colours were grouped together more often then 
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nominally dissimilar colours. On the triad task (choosing the most different of three 

colours), groups tended to choose the nominally isolated colour for their language. On 

the search task (scanning for target colours among distractors), targets were either in a 

different English category than distractors (cross-category), or some targets were in the 

same English category (within-category). The within-category stimuli created greater 

difficulties for the English than for the Ndonga participants. 

Davidoff, Davies & Roberson, (1999) and Roberson et al., (2000) have also found 

substantial differences in categorical perception across speakers of different languages. 

English speakers (eleven BCT) were compared to monolingual Berinmo speakers from 

three villages in Papua New Guinea whose language contains five BCT. Across three 

tasks (a similarity judgement task between three stimuli (Kay & Kempton, 1989), 

category learning and a recognition memory task), it was shown that categorical 

perception was consistently more closely aligned with the linguistic categories of each 

language than with the underlying perceptual universals (Davidoff, 2001). 

There is also evidence that when colour names are not available, colour grouping 

becomes more difficult (Roberson et al., 2000). Language impairment resulting from 

brain damage has been found to make perceptual categorisation, including colour 

categorisation, more difficult (Goldstein, 1948; Roberson, Davidoff & Braisby, 1999). 

For example, patient L. E. W had marked difficulties with all types of spoken output 

although his comprehension skills were excellent (Druks & Shallice, 2000). He had 

normal colour vision and had no difficulty in recognising and interacting with objects 

(Roberson et al., 1999; Druks et al., 2000). However, L. E. W. could not name or 

comprehend colour names, and experienced great difficulty in sorting colours into 
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groups. L. E. W. 's language impairment meant that he was reliant on a perceptual 

strategy for sorting tasks, and he revealed no effects of category boundaries (Davidoff, 

2001). 

The theory of perceptual reorganisation postulates that, whilst perceptual colour 

categorisation is hardwired and universal, language development reorganises locations 

of category boundaries at later stages in development (Franklin, Clifford, Williamson et 

al., 2005). Therefore, according to this account, both perception and language shape 

categories. Parallels in different domains can be found in developmental changes in 

speech (Werker & Tees, 1984) and spatial perception (Hespos & Spelke, 2004). This 

theory is also supported by category training studies (Goldstone, Lippa & Shriffrin, 

2001; Ozgen & Davies, 2002). Learning new colour categories over relatively short 

periods of time leads to the development of categorical perception for these specific 

categories (Ozgen & Davies, 2002). This supports the position that during language 

learning (usually during infancy and childhood), the perceptual representation of colour 

is shaped by language learning. Discrimination around the category boundaries may 

improve relative to within category discrimination producing a `warping' of perceptual 

colour space (Hamad, 1987). 

Further support is provided by Roberson, Davidoff, Davies & Shapiro (2004) who 

compared a group of children from a equatorial African culture, whose language 

(Berinmo) contains five colour terms, with a group of English children. Despite large 

variations in the visual environment, language and education, the acquisition of colour 

vocabularies was gradual and initially perceptually driven. However, there was 

increasing influence of language in shaping category sets in culture-specific ways. 
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Recently, Franklin, Clifford, Williamsonet al., (2005) investigated a group of two to 

four years old Himba toddlers and found categorical perception to be independent of 

colour naming expertise and culture Clearly this question merits continued 

investigation. 

The study of colour in autism is of particular interest to the debate of how influential 

language is to colour categorisation. Language delay forms part of the diagnostic 

criteria for autism (DSM-IV, 1994) and deficits in language functioning are commonly 

observed in individuals with this disorder (De Fosse, Hodge, Makris et al., 2004), these 

difficulties range from a total absence of functional language to impairments in 

phonological processing, vocabulary, higher order syntax and semantics (Lord & Paul, 

1997; Rapin, 1996; Tager-Flusberg, 2003). In contrast to these language difficulties are 

reports of enhanced perceptual skills. For example, children with autism have been 

found to display relatively enhanced performance in detecting embedded figures (Joliffe 

& Baron-Cohen, 1997; Shah & Frith, 1983), on the Block design test from the Weschler 

Intelligence Scales (Shah & Frith, 1993), and in copying impossible figures (Mottron 

Belleville & Menard, 1999). In a fairly recent study, individuals with autism were 

found to be more accurate than verbal IQ matched controls in judging the shape of a 

slanted circle in a context where ambient visual cues are eliminated (Ropar & Mitchell, 

2002). It also appeared that controls were influenced by prior knowledge about the 

stimulus, whereas for the autism group, judgements appear to be more perceptually 

based. 

Participants with low functioning autism (LFA) and high functioning autism (HFA) 

were compared with participants with typical development (TD) and mild learning 
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difficulties (MLD) on a series of tasks investigating colour naming, colour 

discrimination, and colour categorisation. If linguistic factors exert more influence on 

colour processing than perceptual factors, differences between participants with and 

without autism may be found on tasks where naming appears important (naming, 

categorisation task). Further, if children with autism show enhanced perception they 

may consequently show better performance than controls on the perceptual task 

(experiment six). 

EXPERIMENT FIVE - COLOUR NAMING 

Background 

Reliable colour naming has previously been reported to appear surprisingly late at 

around four to seven years of age. (Bornstein, 1985; Heider, 1971; Johnson, 1977; 

Mervis, Catlin & Rosch, 1975). Although young children can name, discriminate and 

categorise colours appropriately, correct and consistent colour naming develops rather 

late in comparison to naming in other related and comparable domains (Bornstein, 

1985). Many children experience great difficulty in learning their first colour word 

(Bornstein, 1985b; Soja, 1994). To learn a colour word, children must represent the 

word, they must represent the colour, and they must make an association between the 

two. Research has shown that children who do not know which colours, colour words 

refer to, are nevertheless able to produce colour words (Backsneider & Shatz, 1993; 

Bartlett, 1977; Binet, 1969; Church, 1961; Cruse, 1977; Istomina, 1963). These 

difficulties may occur either because the concepts that they need to map with colour 

words are inadequate or because the process of mapping is difficult. (Soja, 1994). 
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It is possible that children do not have adequate conceptual representations of colour 

and that their colour categories are purely perceptual. The idea is that having a 

perceptual representation of colour (being able to perceive colour) does not guarantee 

having a conceptual representation of colour (being able to make associations between 

colours and other things). Soja (1994) proposed the `conceptual hypothesis' whereby 

children are unable to acquire colour words until they undergo conceptual development. 

Thus, according to this theory, acquisition of colour words is dependent upon the output 

of general learning mechanisms (Bates, Benigni, Bretherton, Camaioni & Volterra, 

1979; Bates & MacWhinney, 1982; Bruner, 1975; Greenfield & Smith 1976; 

Rummelhart & McClelland, 1987). 

The second possible explanation for children's difficulty in acquiring a first colour word 

is that they represent colours conceptually, but are limited in their mappings between 

words and meanings. This implies that, whilst children cannot map colours onto words, 

they can map colours onto other things. Many people have argued that children's 

inferences about the meanings of words are constrained (Clark, 1987; Markman, 1989; 

Soja, Carey & Spelke, 1991; Waxman & Gelman, 1986). The language acquisition 

hypothesis (Soja, 1994) proposes that whilst children have the basis for acquiring colour 

words, they require further development of language-specific mechanisms or knowledge 

(Chomsky, 1965; Petitto, 1987; Pinker, 1979). This implies that children have innate 

colour concepts that can be developed through imitation, reinforcement and language 

development. 
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Soja (1994) presented a series of experiments that supported the language acquisition 

hypothesis in showing that children who do not know colour words still have conceptual 

representations of colour. They were able to map words onto colours and could make 

inferences about colours. However, despite being able to associate a word as a colour 

term, they were still unable to refer the word to the actual colour. 

It has also been suggested that acquisition of colour terms is constrained by a systematic 

developmental order of acquisition. Berlin and Kay (1969) proposed that the eleven 

basic colour terms would appear in a specific temporal order both across languages (an 

evolutionary hierarchy), and by children within a particular language (a developmental 

order). There is substantial empirical evidence of up to eleven universal perceptual 

colour categories (Hardin & Maffi, 1997). Six of these eleven categories are considered 

to be perceptually unitary or unique. Four unitary hues (red, green, blue, yellow) are 

unique in appearance and cannot be described in terms of any other colour 

combinations, and there are also two achromatic colours (black and white). It is 

believed that these six terms are perceptual building blocks that can be used to describe 

all colours either by applying them singly or in their various combinations. There is 

also evidence that these six unitary percepts are mediated at the cortical level by colour 

opponent processes. However, little is known about the exact physiological 

mechanisms involved, and it is unclear whether the neural representations of unitary and 

non-unitary hues are different (Billock, 1997; De Valois & De Valois 1993; DeValois, 

DeValois, Switkes et al., 1997; Hurvich & Jameson, 1957; Ratliff, 1976). 

In general, the six primary colours have been reported to appear first (Boynton & Olson, 

1990; Corbett & Davies, 1992; Kay & McDaniel, 1978; Millar & Johnson-Laird, 1976). 
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They are also named more accurately than non-primary colours (Davis, Corbett, 

McGurk et al., 1994; Davies & Corbett, 1997; Dougherty, 1978; Istomina, 1963; 

Johnson, 1977; Cruse, 1977). However, in a recent study, the advantage for naming 

these primary terms was found not to co-occur with an advantage for comprehending 

them (Pitchford & Mullen, 2002). 

Pitchford and Mullen (2002) found that children acquire accurate knowledge about the 

first nine basic colours terms (red, yellow, green, blue, black, white, orange, pink, 

purple) at an earlier period (between 35.6 to 39.5 months) than had previously been 

shown. However these findings were consistent with those of Shatz, Behrend, Gelman 

et al., (1996), who showed that three year olds possessed some knowledge of the nine 

basic colour terms, and two year olds possessed knowledge of four of them (red, yellow, 

green and blue). Shatz et al., (1996) suggested that children have earlier colour 

knowledge than children of previous generations because they attend pre-school and are 

exposed to highly coloured stimuli from an early age. In the study by Pitchford and 

Mullen (2002), it was shown that children acquire accurate knowledge of the eleven 

basic colour terms in two distinct time periods. In the first phase, spanning three 

months, they acquire knowledge of yellow, blue, black, green, white, pink, orange, red 

and purple (in any order). Then, after a gap of six to nine months they learn about 

brown and grey, the final two basic colours. 

Studies of adult colour naming have shown that conceptual colour space is categorically 

organised in a manner that reflects the arrangement of perceptual colour space (Boynton 

& Olson, 1987; 1990; Sturges & Whitfield, 1995; Guest & Van Laar, 2000). It has been 

shown that children gradually acquire this system of perceptually based conceptual 
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colour categories during the developmental period in which they learn about colour 

terms (Pitchford & Mullen, 2003). It is proposed that initially the nine colour categories 

that lie to the outside of perceptual colour space become consistently mapped to the 

corresponding conceptual representations in any order. The lag in acquisition of 

reliable knowledge of brown and grey suggests that the internal structure of conceptual 

colour space becomes consistently mapped at a later point in development. 

Aside from brown and grey, the order of acquisition of the other colour terms appears to 

be unconstrained, and might be shaped by environmental factors specific to any 

individual child, such as parental input (Andrick & Tager-Flusberg, 1986). This is 

consistent with other studies that have suggested that adult colour naming is 

unconstrained (Davidoff, Davies & Roberson, 2000; Roberson, Davies & Davidoff, 

2000; Saunders & van Brakel, 1997). 

Brown and grey may be acquired later because children have been found to have 

difficulty with low frequency colour terms, most of which refer to internal non-basic 

colours that are mentioned rarely in children's books (Braisby & Dockrell, 1999; 

Corbett & Davies, 1997). Alternatively these colours may be less perceptually salient or 

lack functional significance (Pitchford & Mullen, 2002). Pitchford and Mullen (2005) 

recently replicated the finding that brown and grey are acquired relatively late and 

confirmed that these colour names appear less in child directed speech. They also found 

a significantly lower preference for these, in comparison to basic colours. However, 

despite difficulties with the linguistic terms for these colours, the children in the study 

were able to accurately discriminate them and use them to make perceptual judgements 

regarding object similarity (Pitchford & Mullen, 2005). 
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Experiment five will investigate colour term production and comprehension for the 

eleven basic colours terms in participants with autism and controls. It is hypothesised 

that as children with autism have atypical language acquisition (De Fosse et al., 2004; 

Tager-Flusberg, 2003), they will show correspondingly atypical performance on the 

colour name comprehension and production tasks. As the developmental literature 

shows that colour comprehension appears before colour naming (Zelazo, Frye & Rapus 

1996; Zelazo & Reznick, 1991), such a pattern may also be found in the 

developmentally delayed participants without autism. 

Participants 

Thirteen children with HFA aged between 7 years 11 months to 15 years 0 months 

(mean 10.9) with non-verbal IQ score between 78-109 (mean 91.17), and thirteen 

children with LFA aged between 7 years and 2 months to 15 years and 8 months (mean 

11.4) with non-verbal IQ ranging between 55-69 (mean 62.15), were matched with 

children with MLD and TD on age, gender and non-verbal IQ scores using Ravens 

Matrices (Raven, Court, Raven 1988). 

Receptive Vocabulary scores, measured by the BPVS were also obtained and are shown 

together with other psychometric data overleaf in table 4.1 
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Table 4.1: Children's psychometric data 

Group Age Ravens BPVS 

Autism (26) 11.2 2.53 76.31 16.87 56.12 12.23 
HFA (13) 10.9 2.69 91.17 10.75 64.42 9.75 
LFA (13) 11.4 2.46 62.15 6.82 47.69 8.41 

Controls (26) 11.2 2.25 77.58 16.42 77.00 21.63 

TD (13) 10.8 2.45 89.07 13.33 89.00 21.58 

MLD (13) 11.5 2.07 65.54 7.73 62.23 10.31 

Apparatus 

Eleven Colour Aid Matt surface colour squares measuring two inches square and backed 

with stiff card. The eleven were the best exemplars of focal colours and were the saem 

stimuli as used by Roberson, Davidoff, Davies et al., (2004). The C*I*E*L*a*b co- 

ordinates and the hue (H), chroma (C) and saturation (V) for the 11 focal colours were as 

follows. 

L* a* b* HV C 

Grey 71.11 0.75 -. 61 6.78P 6.95 0.29 

White 100 0 0 . 46y 9.90 0.00 

Brown 44.12 6.06 7.77 3.41YR 4.28 1.70 

Orange 81.63 36.51 72.4 3.94yr 8.03 13.85 

Purple 39.6 25.81 -21.39 6.228 3.84 7.30 

Black 34.71 2.68 2.27 1.14YR 3.38 0.60 

Yellow90.42 8.97 83.5 1.25Y 8.93 12.64 

Red 58.82 61.92 43.04 6.66r 5.71 15.70 

Blue 49.31 0.92 -48.11 3.66PB 4.78 11.93 

Green 57.32 -42.37 -1.97 3.14BG 5.56 8.42 

Pink 69.6 51.72 35.63 2.88R 8.75 8.45 
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The tiles were placed in a random order in front of the children and they were required to 

name the colours. The procedure was then repeated and this time the experimenter gave 
the colours names and the children were asked to point to the corresponding colour tile. 

Responses were written down by the experimenter. The tiles remained on the table 

throughout both of the tasks. 

Results 

r, 

Table 4.2: Mean number correct on the production and comprehension task 

Group Production- naming 

Mean SD 

Comprehension 

Mean SD 

Total 

Mean SD 

Autism (26) 7.92 4.78 10.62 1.09 18.54 5.28 

HFA (13) 11.00 0.00 11.00 0.00 22.00 0.00 

LFA (13) 4.85 5.21 10.23 1.48 15.08 5.66 

Controls (26) 10.42 2.19 10.88 0.43 21.31 2.31 

TD (13) 11.00 0.00 11.00 0.00 22.00 0.00 

MLD (13) 9.85 3.05 10.77 0.59 20.62 3.18 

* Optimal score 11 

An Initial Analysis of Variance was carried out on the data. Group (autism/controls) was 

the between factor and condition (number correct on the production and comprehension 

task) as the within group factor. The analysis showed a significant main effect of 

condition (F(1,50)=10.36, p<. 05) and a significant main effect of group (F(1,50), =6.06, 

p<. 05). There was also a significant group x condition interaction (F(1,50)=5.18, p<. 05) 

which is shown in figure 4: 1. 
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Figure 4.1: Number of colours correctly identified by the group with autism and 

their controls 

Post-hoc t-tests with Bonferroni adjustments were carried out on the interaction. 

Results showed that the children with autism produced a significantly poorer level of 

performance on the colour word production condition than controls, (t(50)=-2.42, 

p<. 05). However, there was no significant difference in colour comprehension between 

groups (t(50)=-1.16, n. s. ). Within groups, the children with autism showed significantly 

poorer colour name production than comprehension, (t(25)=-3.05, p<. 05). There was no 

significant difference between measures for the control group, (t(25)=-1.09, n. s. ). 

A second analysis of variance was carried out in which the children were subdivided 

into intellectually impaired (non-verbal IQ<70) and unimpaired (non-verbal IQ>70) 

groups. This analysis revealed a significant main effect of group, (F(3,48)=13.39, 

p<0.001), a significant main effect of condition, (F(1,48) = 14.43, p<. 001) and a 
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significant interaction of group and condition, (F(3,48)=9.63, p<. 001), which is shown 

in figure 4.2. 

Figure 4.2: Number of colours identified correctly for the low and high functioning 

groups 

11 
10 

9 
8- 
7 

Number 6 
Correct 5 ®Production 4 

3  C om prehension 
2 

0- 
< <U0 
LL 
= 

U- 0J 
JI 

G roup 

Post hoc tests with Bonferroni adjustments were carried out. Results revealed no 

significant differences between the HFA and TD (both groups performed at ceiling). 

There were also no significant differences between TD and MLD on either the 

production task, (t(24)=1.36, n. s. ), or the comprehension task, (t(24)=. 14, n. s. ). There 

were significant differences between LFA and MLD groups on the production task, 

(t(24)=-2.99, p<. 05) but not on the comprehension task, (t(24)=-1.22, n. s. ), between the 

HFA and MLD groups on the production (t(24)=2.99, p<. 05) but not the comprehension 

task, (t(24)=1.22, n. s. ), between the HFA and LFA groups on the production task, 

(t(24)=4.26, p<. 001) but not on the comprehension task, (t(24)=1.87, n. s. ), and between 
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the LFA and TD groups on the production (t(24)=4.26, p<. 001), but not on the 

comprehension task, (t(24)=1.87, n. s. ). 

Within groups there were no significant differences between the scores on the 

production and comprehension tasks for the children with HFA or TD (all children from 

both groups scored at ceiling on both tasks). Neither was there a difference across task 

for the children with MLD (t(24)=-1.095, n. s. ). Only the LFA showed a significant 

difference (t(24)=-3.77, p<. 05) with better performance on the comprehension task. 

Within the LFA group a wide distribution of colour word production scores was noted. 

Inspection of the individual case data showed that six of these children were unable to 

name colours, despite ceiling performance on the comprehension task. The remaining 

seven LFA children performed satisfactorily on the production task, correctly naming 

more than 80% of the stimuli. This will be further discussed. 

As all participants with TD and HFA achieved ceiling scores on both production and 

comprehension tests, correlations were carried out on the data from the cognitively 

impaired groups (MLD, LFA) only. For the LFA group production scores did not 

correlate with scores on the BPVS (r=. 21, n. s. ), Ravens Matrices (r=. 048,. n. s. ) or with 

Age (r=-. 12, n. s. ). Similarly, comprehension scores did not correlate with scores on the 

BPVS (r=. 093, n. s. ), Ravens Matrices (r=. 44, n. s. ) or age (r=-. 37, n. s. ). For the 

participants with MLD, production scores did not correlate with scores on the BPVS 

(r=. 014, n. s. ), Ravens Matrices (r=. 29, n. s. ) or Age (r=-. 25, n. s. ). There were also no 

significant correlations between comprehension scores and scores on the BPVS (r=-. 31, 

n. s. ), Ravens Matrices (r=-. 079, n. s. ) or Age (r=-. 37, n. s. ). 
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Discussion 

Results showed that when comparing the performance of children with autism (high and 

low functioning) with controls on tasks of colour comprehension and production, 

deficits in producing colour words were in evidence. However no between-group 

differences emerged on the comprehension task. Within group analyses showed that 

children with autism were significantly worse at the production task than the 

comprehension task, whereas there was no significant difference in performance across 

the two tasks in the control groups. 

When the groups were split into cognitively impaired and unimpaired groups, it was 

shown that both the HFA and TD groups scored at ceiling on both the production and 

comprehension tasks. The LFA and MLD groups also performed very well on the 

comprehension task, although group differences emerged on the production task with 

poorer performance in the LFA group. It was particularly interesting that a sub-group 

of the LFA participants performed at near ceiling on the comprehension task despite 

being unable to name colours. The discrepancy between the comprehension and 

production tasks is in line with previous findings from typically developing children, 

showing that they can point to correct colours (comprehend) without being able to name 

them (Zelazo et al., 1991; Zelazo et al., 1996). Although each of the LFA children 

without colour naming had an intelligence and age matched MELD control, the matching 

variable was non-verbal and the mean verbal IQ was lower in the LFA group than in the 

MLD group. It is also relevant that the verbal IQ test measured receptive rather then 

productive vocabulary, and the autism sample may have included children with more 

general speech production difficulties. Indeed inspection of the individual LFA group 
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data showed that the majority of these participants were as able to name colours as their 

MLD controls. 

The analysis of the errors made by the participants with MELD and LFA did provide 

some evidence for developmental delay in colour comprehension and naming. As 

previously mentioned, it has been proposed that knowledge about the six primary 

colours appears first (Boynton & Olson, 1999; Corbett & Davis, 1992; Kay & 

McDaniel, 1978; Millar & Johnson-Laird, 1976), although Pitchford and Mullen found 

limited support for a developmental advantage of primary over secondary colours 

(Pitchford & Mullen, 2005). In the current study, the cognitively impaired children 

made no production or comprehension errors with red, green, yellow or blue stimuli. 

These four colours are described as unitary hues, and are believed to be perceptually 

unique in that they cannot be described in terms of any other colour combinations 

(Hardin & Maffi, 1997). The only errors on primary colours were for the two 

achromatic colours, black and white. Difficulties in identifying and naming grey were 

noted in some of the cognitively impaired children. This finding is consistent with 

previous research showing late acquisition of this colour (Pitchford & Mullen, 2002; 

2003; 2005). 

In the next study to be reported, colour discrimination within four primary colours 

categories will be tested. 
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EXPERIMENT SIX - COLOUR DISCRIMINATION 

Background 

Colour discrimination has been shown to develop at an early age and is prevalent even 

in those who are unable to name colours. Infants can distinguish colour differences 

within the first few weeks of life (Maurer & Adams, 1987; Teller, 1998; Teller & 

Bornstein, 1985). For example, infants as young as four months are able to discriminate 

one colour from another and recognise when two colours are the same (Bornstein, 

Kessen, & Weiskopf, 1976; Catherwood, Crassini & Freiberg, 1989; 1990). In fact, 

similarities in hue are one of the earliest criteria used by young children to categorise 

objects (Melkman, Tversky & Baratz, 1981). 

No research has directly investigated colour discrimination ability in children with 

autism. However, an aspect of this disorder that has aroused considerable interest and 

is central to the cognitive theories of autism outlined in the introduction, concerns 

proposed atypicalities in perceptual information processing. If superior discrimination 

ability, as predicted by the EPF (Mottron & Burack, 2001) and RG theories (Plaisted, 

2001) is characteristic in autism, exceptionally high sensitivity thresholds for small 

differences between colours should be found. Of relevance are findings from studies 

showing higher discrimination thresholds for differences between pairs of complex 

tones in autism (Bonnel, Mottron, Peretz et al., 2005; Heaton, Pring & Hemelin, 1999; 

Heaton, 2003). In the study by Heaton, participants with autism and typical 

development were asked to make same different discriminations of pairs of complex 

tones that differed in perceptual distance. The findings showed that whilst participants 

with autism showed similar levels of performance when perceptual distances were small 
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(between 1&4 semitones), medium (between 5&8 semitones) or large (between 9& 12 

semitones) controls showed a clear effect of perceptual distance with discrimination 

performance increasing as perceptual distance increased. The following study will test 

whether such an effect will generalise to colour discrimination. The hypothesis predicts 
that discrimination performance will be superior in autism in comparison to controls. 

Participants 

The children were the same as those who participated in the colour naming task 

(experiment five). 

Stimuli 

The stimuli used in the program were derived from Munsell colours (Munsell, 1905). All 

colours in the present studies were kept at brightness level six and saturation level six. 
Each of the colours generated was (100* 100 pixels) in size. 

Apparatus 

All experiments were shown on a computer with a monitor. The monitor was placed on a 

table so that the viewing distance remained approximately equal to 49cm. Experiments 

were programmed for presentation through purpose-made programs written in E-prime 

V1.0 (Psychology Software Tools, Inc). Examples of the colours for the four major hue 

values were chosen from the book, and then converted for the computer into x, y, Y co- 

ordinates using the Munsell conversion software. Once the x, y, Y co-ordinates had been 

selected, they were programmed into bit images using the CS 100 software (Davies, 2003; 

purpose written software Goldsmiths College). Colour calibration was achieved as in 

Roberson and Davidoff (2000) using the CS 100 program and was carried out in order to 

ensure the colours remained comparable across testing sessions. 

Procedure 

Training Trials 

Stimuli: Colours of the following hue 1 R, 9R, 1 OR, 1 B, 9B, 1 OB, 1 G, 9G, I OG, 1 Y, 9Y, 

10Y. 
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Children were shown three colour patches next to each other 2cm apart. The children 
were then required to choose the odd one out from the three colour patches. In the 
training trials the interval between the target colour and the two distracters was larger 

than in the experimental paradigms. In the testing trials the children saw, for example, 
IB (target) with two 9B (distractor) or a 9B (target) with two IB (distractors). Otherwise 

they saw 1B (target) with two 10B (distractors) or a 10B (target) with two IB 

(distractors). This was the same for red, yellow and green. In the training stimuli 
distractor patches differed from target patches at intervals of 8.5 or 9. Eight trials (two 

examples for each colour) were shown. The computer generated colours in a random 

order. Children completed as many trials as was necessary to reach ceiling performance, 

and for those had not reached ceiling at the end of the eight training trials the trials were 

repeated. The stimuli remained on the screen until the children had made a response. 
Children responded by pointing to one of the colours on the screen and the experimenter 

recorded the response via the computer. The position of the colours and order of 

presentation of stimuli were randomised by the computer for each participant. 

Experimental Trials: 

Stimuli: Colours of the following hue 2.5R, 5R, 7.5R, l OR, 2.5B, 513,7.5B, 1OB, 2.5G, 

5G, 7.5G, 1 OG, 2.5Y, 5Y, 7.5Y, 10Y. 

The process was exactly the same as for the training trials. The degree of difference 

between the target and different distractor patches was varied over experimental trials. 

There were 24 trials, six of each colour (red, blue, green, and yellow) in small, medium 

and large conditions. In total, children saw two stimuli of each colour at each interval 

level. The two small intervals were at a distance of 2.5 hue from the target colour. In this 

condition children saw either (2.5hue, 2.5hue & 5hue) or (2.5hue, 5hue, 5hue) for each 

colour (red, blue, green and red). In two, the medium condition, the stimuli were at a 

distance of 5hue from the target. In this condition they saw either (2.5hue, 2.5hue & 

7.5hue) or (2.5hue, 7.5hue, 7.5hue) for each colour (red, blue, green and red). As large 

interval distances (2.5 &10) within the yellow and red colour categories are not within 

category exemplars, separate analyses were carried out on these. 
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Results. 

Table 4.3: Means and SDs for the total number of colours correctly identified in 

the three experimental conditions (small, medium and large perceptual distances) 

in the blue and green categories. 

Group Small 

Mean sd 

Medium 

Mean sd 

Large 

Mean sd 

Autism (26) 2.19 1.13 2.54 . 98 3.08 1.09 

HFA (13) 2.54 
. 
96 3.00 

. 
70 3.85 

. 
55 

LFA (13) 1.85 1.21 2.08 1.03 2.31 
. 
94 

Controls (26) 1.73 1.28 2.62 . 98 3.35 . 84 

TD (13) 2.08 1.25 3.08 
. 
49 3.69 

. 
48 

MILD (13) 1.38 1.26 2.15 1.14 3.00 1.00 

An initial analysis of variance was carried out on the total number of correct colour 

discriminations at each size interval in the blue and green categories for the main two 

groups. Group (autism/controls) was the between factor and condition (number correct 

on small, medium and large conditions) as the within group factor. The analysis showed 

no significant main effect of group (F(1,50)=0.03, n. s. ), a significant main effect of 

condition, (F(2,100)=26.39, p<. 001) and no significant group by condition interaction 

(F(2,100)=2.42, n. s. ). The significant main effect of condition is shown in figure 4.3, 
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Figure 4.3: Significant perceptual distance effect within blue and green colour 

categories. 
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Post hoc tests with Bonferroni adjustments were carried out on the effect of condition. 

Results revealed significant differences between the small blue/green and the medium 

blue/green (t(5 1)=-3.16, p<. 05), between small blue/green and large blue/green (t(51)=- 

7.12, p<. 001), and also between medium blue/green and large blue/green (t(51)=-4.22, 

p<. 001). 

A second Analysis of Variance was then carried out on the four subgroups (HFA, 

LFA, TD, MILD). This showed a significant main effect of group (F(3,48)=8.92, 

p<. 001), a significant main effect of condition, (F(2,96)=26.26, p<. 001) but no 

significant group x condition interaction, (F(6,96)=1.39, n. s. ). 
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As a significant main effect of condition had emerged in the previous comparison of 

autism (HFA/LFA) and controls (TD/LL) and no interaction effects emerged when 

the groups were further subdivided, no further analysis of the condition effect was 

carried out. Figure 4.4 shows the significant main effect of group. 

Figure 4.4: Significant main effect of group for discriminations within blue and 

green colour categories 
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Post hoc tests with Bonferroni adjustment were carried out and showed that overall 

discrimination scores for the participants with HFA and TD did not differ significantly 

(t(1) = . 
46, n. s. ), and this was also true for the LFA and MILD groups (t(1) = -. 38, n. s. ). 

However, scores for the TD group were significantly higher than scores for the MLD 

group (t(1) = 2.30, p<. 05) and the LFA group (t(1) = 2.69, p<. 05), and scores for the 

HFA group were significantly higher than scores those for MLD group (t(l) = 2.76, 

p<. 05) and the LFA group (t(1) = 3.15, p<. 05). 

117 

hfa tdc Ifa mid 



Table 4.4 shows the means and standard deviations for identifications across 

experimental conditions for yellow and red trials. 

Table 4.4: Means and SDs for the total number of colours correctly identified in 

the three experimental conditions (small, medium and large perceptual distances) 

in the yellow and red categories 

Group Small 

Mean sd 

Medium 

Mean sd 

Large 

Mean sd 

Autism (26) 1.88 . 99 1.88 . 93 3.27 . 82 

HFA (13) 2.08 1.11 2.08 1.11 3.69 . 48 

LFA (13) 1.69 
. 
85 1.69 . 85 2.85 . 

89 

Controls (26) 2.27 1.15 2.27 1.15 3.31 1.01 

TD (13) 2.54 1.45 2.54 1.45 3.62 
. 
65 

MLD (13) 2.00 
. 
70 2.00 

. 
70 3.00 1.22 

An initial analysis of variance was carried out on the total number correct for the colour 

discrimination at each size interval in the red and yellow categories for the main two 

groups. Group (autism/controls) was the between factor and condition (number correct 

on small, medium and large conditions) as the within group factor. The analysis showed 

no significant main effect of group, (F(1,50)=1.20, n. s. ) but a significant main effect of 

condition, (F(2,100)=62.45, p<. 001). There was no significant group by condition 

interaction (F(2,100), =1.27, n. s. ). The main effect of condition is shown in figure 4.5. 
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Figure 4.5: Significant main effect of condition for yellow and red categories in 

experiment six 

Post hoc tests with Bonferroni adjustments revealed significant differences between 

small yellow/red and large yellow/red (t(51)=-7.88, p<. 001) and between medium 

yellow/red and large yellow/red (t(51)=-7.88, p<. 001). As shown from figure 4.5, there 

were no significant differences between small yellow/red and medium yellow/red with 

groups showing identical mean scores on each. 

Also as figure 4.5 indicates, the pattern of performance for yellow and red stimuli is 

different to that associated with green and blue stimuli. Whilst identifications of small 

perceptual distances (2.5,2.5 & 5) within yellow and red were as accurate as 

identifications of green and blue, increased performance with larger distances (2.5,2.5 

& 7) is not seen with yellow and red stimuli. Performance on the large perceptual 

distance stimuli that do not remain within colour categories (red and yellow) was much 

higher. 
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A second analysis of variance was carried out on the data for the four subgroups (HFA, 

LFA, TD, MLD). This showed a significant main effect of condition (F(2,96)=61.38, 

p<. 001), no significant group effect (F(3,48)=2.25, n. s), and no significant group x 

condition interaction (F(6,96), =. 79, n. s. ). Thus, the pattern of performance, showing 

lower discrimination of medium distance chips and good discrimination of boundary 

chips, persisted regardless of intellectual status. 

Correlations carried out on the data showed that for the autism group, discrimination of 

green and blue chips correlated with performance on the BPVS (r =. 58, p<. Ol) and the 

Ravens Matrices (r=. 68, p<. O 1) but not with age (r = -. 09, n. s. ). However, for the 

pooled small and medium red/yellow none of these correlations were significant 

(BPVS, r=. 46, n. s.; Raven's matrices, r=. 18, n. s., Age, r=. 13, n. s. ). Correlations for 

the discriminations that were not within category (large condition) were significant for 

Raven's matrices (r = . 
50, p<Ol), for BPVS (r = . 46, p<. 46, p<. 04) but not for age (r = 

05, n. s. ). In comparing scores across the different colour groupings, it was found that 

discrimination scores for blue/green stimuli did not correlate with discrimination scores 

for small and medium red/yellow (r = . 29, n. s. ). However, discrimination scores for 

blue/green stimuli did correlate with discrimination for the large red/yellow (no within 

category) stimuli (r =. 43, p<. 05). 

A similar pattern of correlation was found for control participant data. Thus, 

discrimination of green and blue chips correlated with performance on the BPVS (r = 

. 
59, p<. 01) and the Ravens Matrices (r=. 49, p<. 05) but not with age (r = -. 109, n. s. ). 

Data for the pooled red/yellow small and medium distance stimuli also correlated with 
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the BPVS (r = . 
73, p<. 01) and the Ravens Matrices (r=. 46, p<. 05) but not with age (r = 

03, ns. ). Correlations for the discriminations that were not within category (large 

condition) were not significant for Raven's matrices (r = . 
37, n. s. ) or age (r = -. 16, n. s. ), 

but they were significant for BPVS (r = . 
40, p<. 05). As was the case for the autism 

data, discrimination scores for blue/green stimuli correlated with discrimination for the 

large red/yellow (no within category) stimuli (r = . 
62, p<. 01), and for this group they 

also correlated with discrimination scores for small and medium red/yellow stimuli (r = 

50, p<. 01). 

Discussion 

The analysis of the data from experiment six revealed an interesting pattern of findings. 

When comparing discrimination ability within blue and green ranges across groups 

(TD, HFA, MLD and LFA), cognitive level appeared to exert an effect. Both the MILD 

and LFA groups made fewer correct discriminations than the HFA and TD groups. 

The pattern of discrimination in response to red and yellow stimuli was very different to 

that of blue and green, and this was true for all participants regardless of diagnostic or 

intellectual status. No perceptual distance effect characterised responding across small 

and medium conditions, although large stimuli that bordered or crossed category 

boundaries were easily detected. This finding will be further explored in this chapter. 

The pattern of correlations between the test scores and psychometric measures was 

interesting. Unsurprisingly, these showed that the children with the highest verbal and 

non-verbal scores from all groups, regardless of age, showed best discrimination of 

blue/green stimuli. However, a different pattern emerged on the yellow/red stimuli 

121 



condition. For both groups, neither of the intelligence measures correlated with 

discrimination of small and medium red/yellow pairs, although significant correlations 

between scores for the large (category boundary) discriminations and the two 

intelligence measures were significant for the autism group. For controls only the 

verbal intelligence measure correlated with these scores. Finally, whilst there was a 

significant correlation between discrimination performance across the green/blue and 

red/yellow (within category) conditions in controls, this was not found in the autism 

group. For both groups, discrimination of blue/green stimuli correlated with 

discrimination of large (category boundary) red/yellow stimuli. 

One question that this experiment attempted to address was whether children with 

autism possess enhanced perceptual discrimination. The statistical analysis of the data 

failed to support this hypothesis, and the significant group effect reflected differences in 

intellectual rather than diagnostic status. The issue of atypical perceptual performance in 

autism will be further discussed. 
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EXPERIMENTS SEVEN AND EIGHT - COLOUR CATEGORISATION 

Background 

The emergence of categorisation in early childhood is usually considered in terms of the 

development of cognitive abilities that permit relations (i. e. similarities or 

dissimilarities) among stimuli to be detected and represented (Piaget, 1977). However, 

the propensity to categorise objects by hue may owe its origins more to perceptual than 

cognitive processes (Bornstein, 1984). For example, similarities in hue are one of the 

earliest criteria used by young children to categorise objects (Melkman, Tversky & 

Baratz, 1981). 

Bornstein and Korda (1984; 1985) and Boynton, Fargo, Olson et al., (1989) showed that 

categorical effects of hue judgements that parallel those found in judgements of acoustic 

similarity within and between phonemic categories. Within category `different' 

responses are slower than comparable between category `different' responses. Thus it 

takes longer to decide that two blue stimuli are different than to decide that a blue 

stimulus is different to a green stimulus, even when the difference between the two is 

matched in the number of Munsell hue steps (Bornstein & Korda, 1984). 

As outlined in the introduction to this chapter, Categorical perception (CP) may be 

universal or could co-vary with the distribution of linguistic category boundaries. There 

are a number of studies with adults that have highlighted effects of language on colour 

categorisation (Kay & Kempton, 1984; Pilling, Wigget, Ozgen et al., 2003; Roberson, 

Davies & Davidoff, 2000). For example, Roberson et al., (2000) found substantial 
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differences in perceptual judgements and memory performance between a language 

with eleven basic colour terms (English) and one with only five basic colour terms 

(Berinmo), suggesting that language effects memory performance and the perceived 

similarity of stimuli. This finding was in line with results previously reported by Kay 

and Kempton (1984). 

However, some researchers believe that categorical perception is an innate, universal 

and perceptual effect. Indeed some studies have shown CP in children as young as four 

months (Bornstein et al., 1976; Catherwood et al., 1989; Franklin, Clifford, Williamson 

et al., 2005). Franklin et al., (2005) have also recently published data showing that CP 

was no stronger in children with developed colour term knowledge than those without 

this knowledge. 

Few studies have directly assessed category formation of children with autism to form 

categories. However some of these studies of the few that have been carried out have 

found intact categorisation. For example, Ungerer and Sigman (1987) tested a group of 

participants with LFA with a mental age range of one to three years, and found that they 

were able to distinguish between simple perceptual categories, defined by colour and 

form, as well as between members of natural and artifact categories. In another study, 

Tager-Flusberg (1985b) found no differences in the meaning attributed to super-ordinate 

(animal) and basic category labels (cat) between a group of LFA and two control 

groups. However, the findings from several studies suggest that people with autism do 

show abnormal responses to categorical information. For example, Dunn, Vaughan, 

Kreuzer et al., (1999), presented a semantic classification task to children with HFA and 

controls, and measured ERP responses to words presented auditorally. Whilst the ERP 
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measures of the controls suggested that they had activated mental representations of the 

super-ordinate category label, the HFA group failed to show these activation patterns. 

Shulman, Yirmiya & Greenbaum (1995) administered a range of categorisation tests to 

three groups of children (LFA, TD and learning disabilities). Autism-specific deficits 

were revealed in a free sorting task in which LFA children made fewer accurate 

classifications of representative objects. LFA children have also been shown to fail to 

aid free recall memory by grouping exemplar information into categories (Hermelin & 

O'Connor, 1970; Minshew, Goldstein, Muenz & Payton, 1992; Tager-Flusberg, 1991), 

an effect that has also been replicated in adults with autism spectrum disorders (Bowler, 

Matthew & Gardiner, 1997; Bowler, Gardiner, Grice et al., 2000). 

There has also been limited research exploring the prototypicality effect in autism. A 

prototype can be defined as the most representative member of a category, and a 

prototype effect can be demonstrated using a categorisation task where an unstudied 

prototype is classified with equal or greater accuracy than previously studied but less 

typical exemplars (Metcalfe & Fisher, 1986; Posner & Keele, 1968). Another 

characteristic of the prototype effect is that recognition levels tend to reflect the degree 

of similarity between exemplars with very similar prototypes being associated with 

greater recognition (Cabeza, Bruce, Kato et al., 1999; Omohundro, 1981). Dunn, 

Gomes & Sebastian, (1996) examined prototypicality in naturally occurring categories 

using a word fluency task where the children had to list examples of animals and 

vehicles. The HFA children were found to produce a lower proportion of prototypical 

responses than either of the control groups (one with language impairment and other 

with TD). Klinger and Dawson (2001) examined responses to prototypes of artificial 

categories presented in the form of cartoon animals in children with LFA, Down 
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syndrome (DS) and TD. The TD participants tended to select the prototype whereas 

both the clinical groups performed at chance levels on the task. 

There are two main accounts of categorisation performance in autism. The first 

proposes that there is an impairment in prototype formation (Klinger & Dawson, 2001), 

and the second proposes that category deficits are a result of an impairment in 

processing features held in common between stimuli (Plaisted & O'Riordan & Baron- 

Cohen, 1998). These accounts, together with the weak central coherence theory (Frith 

1989, Frith & Happe 1994), imply a reduced or absent prototype effect in autism (cited 

in Molesworth, Bowler & Hampton, 2005). 

Klinger & Dawson (2001) have argued that prototype formation requires the ability to 

integrate information across experience to form a central gestalt representation, and 

therefore any impairment may be a result of wider problems in central coherence. 

However, the generalisation theory (Plaisted et al., 1998; Plaisted, 2001) predicts that 

children with autism show enhanced discrimination ability which contributes to the 

production of sharper category boundaries with narrower category content than is seen 

in typically developing individuals. If categories have sharper boundaries, then it is 

less likely that novel unusual exemplars (ie those that might lie at the category boundary 

for the developmentally normal individuals) will be recognised and encoded as part of 

an existing category. Plaisted (2001) suggest that this explains why children with 

autism develop highly restricted interests such that a child with autism becomes 

fascinated with only a certain make of car. 
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A recent study carried out by Molesworth, Bowler and Hampton (2005) failed to find 

impaired prototype effects in autism. In these studies, children with autism spectrum 

disorder were compared to age and verbal mental age matched controls on a picture 

recognition task (experiment one) and two prototype recognition tasks. Experiment one 

required the children to sort pictures of animals and vehicles into category piles before 

being shown test pictures where half were replicas of the cards just sorted and the 

remainder novel items. Children had to say whether they had seen the cards before. 

Experiment two used stimuli of an average prototype structure based on stimuli 

previously developed by Younger (1985). Here children were shown pictures of 

cartoon animals that were organised around average prototypes. These prototypes 

possessed features (legs, noses) that were category average in size. Experiment three 

used a model prototype structure based on stimuli developed by Hayes and Taplin 

(1993). These stimuli possessed the feature types that occurred most frequently in the 

study sets. Such feature types varied in identity such that a head feature could be square 

or circular. Following study phases, the children were required to complete recognition 

tests comprising prototypes and other exemplars with varying degrees of similarity to 

the prototypes. Both groups showed intact recognition memory and a full prototype 

effect in recognition memory. Thus these results contradicted and failed to support both 

Klinger and Dawson's (2001) prototype formation theory and Plaisted et al. 's (1998) 

deficit in common feature processing theory, 

The role of perceptual discrimination in category formation is controversial. Notman, 

Sowden & Özgen (2005) found enhanced sensitivity at the category boundary in a 

same/different discrimination task. Here human participants were taught to distinguish 

between two categories of Gabor patterns that differed by spatial phase. Notman et al. 

127 



argued that the findings from the study showed that category learning had changed 

perceptual sensitivity. However, Fahle (2002; 2004; in press) pointed out several flaws 

in this argument, one of which was that the sensitivity shown in the Notman et al. study 

failed to generalise to changes in the orientation of the stimuli. Another criticism was 

that such a narrow bandwidth is an improbable basis for perceptual categorisation since 

humans would need to learn to categorise the same stimuli separately at many different 

orientations. Cross-species research has also failed to support any link between 

enhanced discrimination and narrow boundary categorisation ability. Goldstein, 

Davidoff and Fagot (submitted) investigated colour discrimination in humans and 

baboons. Comparisons between humans and the species of baboon (Papiopapio) are 

justifiable as these primates have been shown to have the same retinal colour vision as 

humans (Adams, Bryan & Jones, 1968). Before testing Baboons, Goldstein et al., firstly 

confirmed the human colour category boundary between green and blue via a colour 

naming task. They then presented the baboons and the human participants with a fixed 

choice task that contrasted two different cross category and two different within 

category decisions. The findings from the fixed choice task showed that the boundary 

position promoted superior recognition in a cross-category task in humans, but not 

baboons. However, despite the category advantage for humans, psychophysically 

determined colour discrimination thresholds were very similar for the two species. 

Therefore whilst humans showed superior categorisation ability at the boundary 

position, enhanced discrimination was not in evidence. The fact that the two species 

differ in regards to verbal skills combined with the absence of superior discrimination 

skills emphasised the role of linguistic factors. 
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The following two experiments attempted to determine whether children with autism 

posses similar category boundaries to controls. In experiment seven, participants were 

required to verbally label Munsell chips from the blue/green range as blue, green or 

neither, and chips from the blue/purple range as blue, purple or neither. In experiment 

eight, participants were required to choose the odd one out from three Munsell chips in 

three conditions. In condition one, chips were all within categories, in condition two 

there were two within category chips and one category boundary chip, and in condition 

three there were two within category chips and one chip from a different category. 

It was predicted that if children with autism identify the same stimuli as being 

representative of category boundaries to age and intelligence matched controls in 

experiment seven, similar levels of performance in experiment eight (the odd one out 

task) would suggest that they were using a direct language strategy. However, if as 

suggested by theoretical accounts of autism outlined in the introduction (RPF & RG 

theories), they are more reliant on a perceptual strategy, they would show different 

performance to controls across the two tasks. In order to be consistent with predictions 

drawn from the generalisation theory, children with autism would differ from controls 

in showing sharper categories boundaries than controls. 

EXPERIMENT SEVEN - COLOUR CATEGORISATION (NAMING) 

Participants 

Twenty children with autism aged between 8 years 0 months to 15 years 10 months 

(mean 11 years 7 months) with non-verbal IQ scores ranging between 54-109 (mean 

82.53) were matched with children with moderate learning difficulties and typical 
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development for age, gender and non-verbal IQ using Ravens Matrices. The Children's 

Psychometric data is shown in Table 4.5. 

Table 4.5: Means and standard deviations for a e, Ravens and BPVS participant 

scores. 

Group 

Age 

Mean sd 

Ravens 

Mean sd 

BPVS 

Mean sd 

Autism (20) 11.7 2.46 82.53 15.15 60.47 12.45 

HFA (14) 12.2 2.69 91.71 11.21 63.62 9.77 

LFA (6) 11.2 2.31 65.33 6.12 53.67 15.73 

Controls (20) 11.8 2.10 80.11 15.77 81.63 20.93 

TD (14) 12.0 2.04 86.79 13.18 89.36 21.11 

MLD (6) 11.9 1.73 64.17 3.97 66.33 4.84 

Stimuli: Stimuli used were from the Munsell collection. The stimulus set for the green- 

blue range (BG) included Munsell chips, 7.5G, IOG, 2.5BG, 5BG, 7.5BG, IOBG, 2.5B, 

5B and 7.5B, all at levels of lightness (4) and saturation (8). The stimulus set crossing 

the blue-purple boundary (PB) included Munsell chips IOB, 2.5PB, 5PB, 7.5PB, IOPB, 

2.5P, 5P, 7.5P and IOP, all at the same lightness and saturation as the blue/green range. 

All stimuli were mounted on squares of card measuring two inches square. 

Method 

Children were shown the Munsell chips individually and in a random order. They were 

asked to choose the colour name they thought appropriate for each of the colour chips. 
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For the blue/green range they were given the choice of responses of blue, green or 

neither (not blue or green). For the blue/purple range they were given the choice of blue, 

purple or neither (not blue or purple). Each chip was removed from sight immediately 

after naming. 

Figure 4.6: The colour names given to the Munsell chips by the participants with 

autism 
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Figures 4.6 and 4.7 show the frequency of the responses for the control group and the 

group with autism. It appears that for both groups, the blue/green boundary is around 

5BG and 7.5BG with the majority of children calling 5BG green and 7.5BG blue. For 

the blue/purple range the boundary was around 5PB and 7.5PB, with the majority of 

children calling 5PB blue and 7.5PB purple. There was more variation across the 

category boundaries for the children with autism, and they appeared to show lower 

levels of consensus on the colour name for 7.5BG, IOBG, 2.5B (blue/green range) and 

5PB (blue/purple range) chips. 

For analysis purposes, colour chip/name pairs that were most frequently selected by TD 

control participants were considered to be correct. Fisher's exact tests were then 

carried out comparing the number of children with autism and their controls who 

labelled chips with the correct colour name or gave another choice (i. e. responded with 

the other colour name or gave a neither response). The analysis of the data showed that 

for the 5BG chip the difference between children with autism and controls approached 

statistical significance (p<. 053). There was no significant difference for 7.5BG 

(p<0.14), 1OBG (p<0.26), 2.5B (p<0.35), 2.5PB (p<0.50) or 5PB (p<0.35). It thus 

appeared that the children with autism showed similar performance to controls in 

naming across the blue/purple boundary. Whilst the differences in naming across the 

green/blue boundary were not statistically significant, it did nevertheless warrant further 

investigation. Whilst controls clearly found the Munsell chip 5BG to be best represented 

by the colour name green, the children with autism were less consistent in this 

assessment and their category boundary for the BG range appeared to be wider than 

controls. 
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EXPERIMENT EIGHT - COLOUR CATEGORISATION (TRIAD TASK) 

Procedure 

In the second categorisation experiment, children were asked to identify the chip that 

appeared to be the most different in a triad of three similarly coloured chips. Again, 

chips were drawn from the BG range and PB ranges. On the basis of the findings from 

experiment seven it was predicted that, when participants were required to identify the 

odd one across category manipulations, differences between groups would again be seen 

across the BG and PB ranges. 

Stimuli 

The chips were the same as those used in experiment seven. They were 7.5G, lOG, 

2.5BG, 5BG, 7.5BG, IOBG, 2.5B, 5B and 5P for the blue/purple range and 5B, 7.5B, 

IOB, 2.5PB, 5PB, 7.5PB, IOPB, 2.5P and 5P for the blue/purple range. All stimuli used 

had lightness (value) 4 and saturation (chroma) 8. The exact specifications for the triads 

(1-16) are provided in the appendix. 

Method 

Training trials: The children were shown pictures of irregular objects (see appendix) in 

triads of three, where two were similar (either in size, colour or shape) and one was very 

different. The triads were placed one at a time in front of the children and they had to 

choose the one that was most different. The children were told if they were correct or 

not and given an explanation for the correct answer. The triad was then replaced with 
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another one. Training continued until participants correctly labelled three triads in a 

row. 

Experimental Trials 

The triads of stimuli contained either (1) three chips within a category (5B, 2.5B and 

1OBG) (triads 1,2,7,8); (2) two chips within a category and one boundary chip (2.5B, 

1OBG, and 7.5BG - eg 2.5B, 1OBG, 7.5BG); triads 3,4,5,6,9,10,14,16); or (3) two 

chips within a category and one from other category (e. g 5B, 1OBG, 5BG; see triads 11, 

12,13,14). Chips were either one, two or three steps apart, but always with equal 

spacing between the adjacent pairs of the triad. As was the case in the training trials, 

the children were asked to choose which of three chips was the most different. Each 

triad was placed in front of the participant in random order. Once the children had 

responded, the chips were removed and replaced with another triad. 

Results 

Children received a total score out of sixteen. For the three chips within category they 

received a score of one if they chose the chip nearest the next category boundary as 

most different. Where there were two chips within category and one boundary chip, 

they scored one if they chose the boundary chip as most different. For the triads that 

included two chips within and one across category, they scored one for choosing the 

across category chip as most different. Means and standard deviations are shown below 

in table 4.6. 
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Table 4.6: Mean and standard deviations on the scores ( chose the predicted chip) 

in blue/green range, blue/purple range and the combined total. 

Group Total Score 

Mean sd 

Blue/Green 

Mean sd 

Blue/Purple 

Mean sd 

Autism (20) 11.20 2.20 5.20 1.28 5.80 1.44 

Controls (20) 10.10 1.65 4.70 1.26 5.40 0.88 

*Optimal total score=16, Optimal score for Blue/Green and Blue/Purple range=8 

An Analysis of variance revealed a significant main effect of condition, (F(1,38)=7.55, 

p<. 05). However there was no significant main effect of group, (F(1,38)=2.11, n. s. ), 

and no significant group by condition interaction, (F(1,38)=. 045, n. s. ). 

Post-hoc analysis of the significant main effect of condition showed that participants 

from both groups performed as predicted across the blue/purple range significantly 

more often than across the blue/green Range, (t(39)=-2.78, p<. 05). This is shown in 

figure 4.8. 

Figure 4.8: Scores across the blue/green range and the blue/purple range 
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In the next analysis the number of predicted chip choices across the three conditions 

(e. g. all within, 2 within + boundary chip, 2 within +1 different category chip), was 

calculated. The maximum frequency for each triad was 20 (number of children from 

each group). This meant that for the all within condition, where there was four different 

triads (4x20), the optimal choice frequency was 80. This was the same for the 2 within 

+1 different category condition. For the 2 within +1 boundary chip there were eight 

triads (8x20), so the optimal score was 160. 

Table 4.7 shows the choice frequency for the predicted chip and the other two chips 

across conditions. 

Table 4.7 Frequency of predicted and non-predicted chip choice across the three 

conditions 

Group All Within 2Within +Boundary 2With + Category 

Optimal score=80 Optimal score=160 Optimal score=80 

Predicted Other Predicted other Predicted Other 

Autism 54 26 124 36 55 25 

(20) 

Controls 50 30 118 42 52 28 

(20) 

Chi square was carried out between the groups in the three conditions separately. There 

were no significant differences between groups for the within condition (x2= 
. 
44; 

136 



df=1, p=. 51), the 2 within +1 different category condition (x2= 0.25; df=1, p=. 61) or the 

2 within +1 boundary condition (x2= 
. 
61; d1, p=. 44). 

The percentage of predicted or unpredicted chip choice is shown overleaf in table 4.8 

and illustrated in figure 4.8. As can be seen from figure 4.9, the two different 

participant groups showed very similar levels and patterns of performance. 

Table 4.8: Mean percentage of choices for the predicted and unpredicted chips 

across the three conditions 

Group All Within 2Within +Boundary 2With + Category 

Predicted Other Predicted other Predicted Other 

Autism 67.50 32.50 77.50 22.50 68.75 31.25 

(20) 

Controls 62.50 37.50 73.75 26.25 65 35 

(20) 

Figure 4.9: Percentage predicted chips chosen across conditions 
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As the RG theory proposes that generalisation abnormalities in autism reflect atypical 

perceptual processing, and the findings from experiment six had showed a significant 

effect of cognitive impairment on discrimination of blue and green, separate analyses 

were camed out in which the autism and control groups were subdivided into 

intellectually impaired and unimpaired groups.. In order to maintain group sizes, data 

from a further six children with LFA and their MLD controls was included. Although 

the LFA participants had been able to comprehend colour names, some were unable to 

produce them (see experiment five) and had therefore been excluded from experiment 

seven. However, they had been able to complete experiment eight and they were 

reintroduced into the subject sample. The details for all who participated in experiment 

eight are shown in table 4.9 below. 

Participants 

Table 4.9: Means and standard deviations for age, Raven and BPVS for the low 

and high functioning groups 

Group Age Ravens BPVS 

Mean sd Mean sd Mean sd 
Autism (26) 12.2 2.58 76.19 17.07 56.61 13.43 

HFA (13) 11.9 2.58 90.46 10.60 64.53 9.34 

LFA (13) 12.5 2.65 61.92 7.29 54.69 12.33 

Controls (26) 12.1 2.28 75.15 16.15 75.85 21.38 

TD (13) 11.8 2.45 87.46 13.46 88.69 21.82 

MLD (13) 12.5 2.15 62.85 5.81 63.00 10.89 
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The scoring system was the same as shown for experiment six. Table 4.10 shows the 

means and standard deviations for predicted chip choice in blue/green range, 

blue/purple range and the combined total. 

Table 4.10 Means and standard deviations for predicted chip choice in the 

blue/green range, the blue/purple range and the combined total. 

Total Score 

Mean sd 

Blue/Green 

Mean sd 

Blue/Purple 

Mean sd 

Autism (26) 10.08 2.79 4.77 1.48 5.31 1.74 

HFA (13) 12.00 1.58 5.69 1.03 6.31 1.25 

LFA (13) 8.15 2.38 3.85 1.28 4.31 1.60 

Controls (26) 9.73 1.95 4.31 1.43 5.42 0.99 

TD (13) 10.08 1.32 4.54 0.97 5.54 0.97 

MLD (13) 9.38 2.43 4.08 1.80 5.31 1.03 

* Optimal score 16 

An analysis of variance was then carried out on the data from the subdivided groups 

(HFA, LFA, MELD, TD). This revealed a significant main effect of condition, 

(F(1,48)=13.92, p<. 001); and a significant main effect of group, (F(3,48)=8.50, p=. 001). 

However there was no significant group by condition interaction, (F(3,48)=. 630, n. s. ). 

As can be seen from table 4.10 and figure 4.10 below, all participants performed as 

predicted for the PB range more often than for the BG range. Independent t-tests with 

Bonferroni adjustments were carried out on total scores for groups (BG and PB range). 
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These revealed a significant difference between the HFA and TD, (t(24)=3.37, p<. 05); 

between HFA and MLD, (t(24)=3.25, p<. 05); and between the HFA and LFA, 

(t(24)=4.86, p<. 001). There were no significant differences between TD and MLD, 

(t(24)=. 90, n. s. ); between TD and LFA, (t(24)=2.55, n. s. ); or between LFA and MLD, 

(t(24)=-1.31, n. s. ). 

Figure 4.10: Scores for the blue/green range and blue/purple range 

The percentages of predicted and unpredicted chip choices are shown overleaf in table 

4.11. 
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Table 4.11: Percentages of choices for the predicted and unpreducted chips across 

the experimental conditions 

Group All Within 2 Within + Boundary 2 Within +Category 

Optimal Score =80 Optimal Score =160 Optimal Score =80 

Predicted Other Predicted Other Predicted Other 

Autism 67 37 131 77 65 39 

HFA (13) 37 15 84 20 36 16 

LFA (13) 30 22 47 57 29 23 

Controls 64 40 129 79 65 39 

TD (13) 35 17 68 36 31 21 

MLD (13) 29 23 61 43 34 18 

Chi square analyses were carried out on between group data in the three conditions. 

These showed that there were no significant differences between groups for the within 

condition (x2= 3.69; df--3, p=. 29) or the 2 within +1 different category (x2= 2.38; d3, 

p=. 49). However there was a significant difference for the 2 within +1 boundary 

condition (x2= 29.13; df3, p<. 001. Further analysis for the 2 within +1 boundary 

condition revealed significant differences between, FFA and LFA (x2= 28.23; dgl, 

p<. 001), HFA and TD (x2= 6.26; df 1, p=. 012), HFA and MLD (x2= 12.04; df=1, 

p<. 001), TD and LFA (x2= 8.58; df=1, p=. 003), LFA and MLD (x2= 3.78; df=1, p=. 05). 

However, no significant differences were found between the TD and MLD (x2= 1.00; 

df=1, p=. 32). 
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The percentage of predicted or unpredicted chips chosen is shown in table 4.12 and 

illustrated in figure 4.11. 

Table 4.12 Mean percentage of predicted and unpredicted chips chosen across the 

three conditions 

Group Within 

Predicted Other 

2 Within +Boundary 

Predicted Other 

2 Within +Category 

Predicted Other 

Autism 64.42 35.58 62.98 37.08 62.50 37.50 

HFA 71.15 28.85 80.77 19.23 69.23 30.77 

LFA 57.69 42.31 45.19 54.81 55.76 44.24 

Controls 61.54 38.46 62.02 37.98 62.50 37.50 

TD 67.31 32.69 65.38 34.62 59.62 40.38 

MILD 55.77 44.23 58.65 41.35 65.38 34.62 

Figure 4.11: Percentage predicted chip chosen across conditions 
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As can be seen, the autism groups (HF & LF) performed similarly to their matched 

control groups (TD & MILD) on the within and across category boundary conditions. 

However the results from the condition that included a boundary chip showed a 

different pattern. As the chi-square analyses showed, the HFA group gave significantly 

more predicted responses than the other three groups, and the LFA gave significantly 

fewer predicted responses than the other three groups. 

Correlations were carried out on the data and showed that number correct as predicted 

did not correlate with age for any of the participants groups (HFA, r=. 09, n. s.; LFA, 

r=. 02, n. s.; TD, r=-. 09, n. s.,. MLD, r=-. 20, n. s. ), and this was also the case for Raven's 

Matrices (HFA, r= . 
31, n. s.; LFA, r= . 001, n. s.; TD, r=-. 27, n. s.; MLD, r= . 

28, n. s. ) 

and BPVS (HFA, r= . 
24, n. s.; LFA, 1---. 09, n. s.; TD, r=-. 18, n. s.; MLD, r=-. 21, n. s ). 

Discussion 

Experiments seven and eight investigated colour categorisation in autism, MLD and 

TD. In experiment seven, participants were presented with chips to be named as blue, 

green or neither or blue, purple or neither. The spectrum for the chips ranged from 7.5G 

to 5P, and chips selected as category boundary chips were those most commonly 

labelled this way by the typically developing controls. The findings from the study 

suggested that, whilst the blue/purple category boundary was similar for all groups, 

there was less consensus within the autism group about which chip represented the 

blue/green category boundary. In experiment eight, participants were asked to identify 

which of three chips appeared to be the most different. The analysis showed that 

performance was nearer to that predicted by typically developing control data for 
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blue/purple than for blue/green chips. Whilst the initial data analysis did not appear to 

show differences between the autism and control groups on the different experimental 

conditions, significant effects for both group and condition did emerge when the 

subsequent analysis separated groups on the basis of diagnosis and intellectual status. 

Post-hoc analyses showed that the groups did not differ on the condition where chips 

were all within category or the condition where one chip was in a different category. 

However, on the condition that included a category boundary chip group differences did 

emerge. Whilst there was no significant difference between the TD and MLD groups, 

the high and low functioning participants with autism performed differently to each 

other and to their two matched control groups. Further analysis of this effect showed 

that the HFA participants possessed tighter category boundaries than the other three 

groups, and LFA participants possessed looser category boundaries than the other three 

groups. The significance of these findings for theoretical accounts of autism and of 

colour perception will be discussed in the following section. 

GENERAL DISCUSSION 

The findings from experiment five showed that children with autism and intellectual 

impairment possessed good colour name comprehension. Significant differences 

between groups emerged on the colour naming condition, but this effect depended upon 

a sub-group of low-functioning children with autism who may have possessed general 

productive language difficulties. Whilst the HFA and TD groups performed at ceiling 

on comprehending and naming conditions, some cognitively impaired participants did 

make some errors on black, white and grey stimuli. Pitchford and Mullen (2002,2005) 

had shown that grey is the last colour to appear in typically developing children and this 
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may explain relative difficulties with this colour in developmentally delayed children. 

However, the cognitively impaired children's overall levels of performance were good 

and did not provide evidence for deficits in colour comprehension or production. In 

experiment six (colour discrimination), both the children with autism and controls 

showed a different pattern of performance across the blue and green categories 

compared to the red and yellow categories. For the blue and green categories the odd 

one out chip at each of the intervals, small (2-5,2-5,5), medium (2-5,2-5,7-5) and large 

(2-5,2-5,10) were within colour categories. Here the cognitively impaired children, 

both with and without autism, showed a significantly lower level of discrimination 

performance in comparison to cognitively unimpaired controls with and without autism. 

The pattern of discrimination performance within the red and yellow categories, where 

the target (odd one out) chip was within category for the small and medium interval but 

in another category or at the category boundary for the large interval, was very different 

to that seen for blue and green categories. Here there was no significant effect of group, 

and all participants showed a similar pattern of performance across the three size 

intervals with equally good discrimination in small and medium conditions, and 

dramatically increased discrimination on the large (boundary) interval condition. For all 

participants, discrimination of blue/green intervals correlated with performance on the 

verbal and non-verbal measures, and this was also true for all the stimuli in the 

yellow/red condition for controls. For participants with autism, only discrimination of 

the large (boundary) interval in the yellow/red conditions correlated with these 

measures. For controls, discrimination of blue/green intervals correlated with 

discrimination of all yellow/red intervals, but for participants with autism only the 

correlation between blue/green discriminations and large (boundary) yellow/red 
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discriminations was significant 

either group. 

No performance measures correlated with age for 

Experiments seven and eight attempted to determine whether category boundaries in 

autism would differ from those without this disorder. The findings from experiment 

seven, where children were required to name chips, appeared to show that there was 

lower consensus about the position of blue/green and blue/purple boundaries for 

participants with autism. However, only the difference in green/blue boundary choice 

approached statistical significance. This effect was further investigated in experiment 

eight. In this experiment, participants were presented with triads of chips and the task 

was to identify which of them was the least similar to the other two. One condition 

included three chips that were all within category, and here no group differences 

emerged. This was also the case for a second condition in which the least different chip 

was drawn from a different category. However, on the condition that included a 

boundary chip group differences did emerge. The analysis showed that the performance 

of the participants with MLD did not differ from that of the TD children. However, the 

performance of the autism groups (HF & LF) was different to that of their age and 

intelligence matched controls and to each other. The children with HFA were more 

likely to respond to criteria chips as to a category boundary, and the LFA children were 

less likely to do so. This then provided evidence for tighter category boundaries in HFA 

and looser category boundaries in LFA. 

The theoretical accounts of colour processing outlined in the introductory chapter laid 

stress on the importance of perceptual or linguistic factors. As the theories of autism 

previously discussed propose that the disorder is characterised by enhanced perception, 
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studies of colour with autism were potentially fruitful in developing both theories on 

autism and of colour perception. In particular, predictions drawn from the EPP and RG 

theories would be that individuals with autism would have enhanced perceptual 

processing (EPF and RG) and narrow category boundaries (RG). However, the findings 

from experiment six provide no evidence that individuals with autism possess enhanced 

perceptual processing. Whilst there was clear evidence for atypical colour categorisation 

in autism, the data from the LFA group was in the opposite direction to that predicted 

by the RG theory. Although the HFA participants did show tighter category boundaries 

than controls, they did not show any evidence of enhanced perceptual processing of 

colour in experiment six. As high acuity perceptual processing and narrow category 

boundaries are causally linked in the RG model, these findings pose a strong challenge 

to this account. 

In the experimental studies reported in this chapter, participants with autism were 

individually matched to controls on a measure of non-verbal intelligence and also on 

chronological age. The findings from studies five and six show that this method of 

matching can result in groups that show highly comparable performance. However, 

many of the participants with autism possessed poorer verbal than non-verbal skills than 

their controls. As outlined in the introduction, delayed language acquisition is a 

diagnostic criteria for autism, and even able individuals who eventually develop good 

mechanical language skills (see introduction) show atypical linguistic processing, 

tending, for example, towards over-literal or concrete language. The linguistic relativity 

theory predicts that categorical perception varies with language (Kay & Kempton, 1984; 

Roberson et al., 2000), and it is therefore plausible to suggest that rigid boundary 

formation, seen in able individuals with autism, reflects these language peculiarities. 
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When cognitive impairment curtails language development more severely, the role of 

language in shaping perceptual categories may be negligible and boundaries may be far 

less well defined. The findings from the current studies lend support to this suggestion. 

In the following chapter, the relative contributions of perceptual factors and verbal 

labelling to colour memory will be investigated. 
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CHAPTER FIVE 

INVESTIGATING THE EFFECTS OF COLOUR NAMING ON COLOUR 

MEMORY IN CHILDREN WITH AUTISM 

Summary: In the studies reported in this chapter, children with autism and their age 

and intelligence matched controls were tested for their ability to remember colours and 

colour names. In experiment nine, children were presented with animals and colour 

patches in a paired learning paradigm. It was hypothesised that children who used 

verbal labels for the presented colours would perform at higher levels on the task. The 

method used in experiment ten was the same as that used in experiment nine, in that 

children were exposed to animals and colour patches for pairing. However, in this study 

four exemplars of the colours to which the children had been exposed were presented in 

the test phase, and performance could not be facilitated by verbal rehearsal of the 

animal-colour pairing. In experiment eleven, animals were paired with colour words. 

Success on this study therefore depended entirely on the children's memory for the 

verbal labels. Taken together the findings showed that cognitively unimpaired children 

with autism as well as children with typical development and moderate learning 

difficulties showed better memory performance in the experiments that allowed the use 

of verbal labels. In contrast, cognitively impaired children with autism showed their 

highest levels of performance on the experiment where verbal labels did not facilitate 

performance. 
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INTRODUCTION 

In the previous chapter, where data from a range of colour experiments was presented, 

two important findings emerged. The first of these was that children with autism did 

not show enhanced colour discrimination, and the second was that they appeared to 

possess different colour category boundaries to their age and intelligence matched 

controls. As both the Enhanced Perceptual Functioning (EPF) theory and the Reduced 

Generalisation (RG) theory predict heightened perceptual discrimination, and the RG 

theory proposes that this results in narrow category boundaries, these theories were 

rejected in favour of an account that relates abnormal language in autism to categorical 

perception. In the studies presented in this chapter, the role of verbal labelling in colour 

memory was investigated. 

COLOUR AND MEMORY 

Baddeley (1986), and Baddeley and Hitch (1974) outlined a model of memory that 

specifies a separation of functions for the processing of verbal material (the 

phonological loop) and visuospatial material (visuospatial sketchpad). The 

phonological loop is defined as a limited capacity store to which spoken words gain 

direct access, and includes an articulatory rehearsal mechanism that allows words to be 

maintained in the store by a process of sub-vocal rehearsal. This articulatory rehearsal 

mechanism can facilitate memory for visual material by translating written words or 

pictures into verbal codes, known as phonological/verbal recoding (Laws, 2002). 

Developmental research suggests that between the ages of five and eight years 

children's memory strategies change. Initially they have no particular strategy for 
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remembering pictures, then visual encoding occurs to be followed by both visual and 

verbal encoding. Finally, they reach a stage where more efficient verbal encoding 

becomes the preferred strategy (Palmer, 2000). It has been proposed that visual 

encoding dominates until around seven years, at which point verbal encoding of picture 

material is established (Brown, 1977; Hayes & Schulze, 1977; Hitch, Halliday, Dodd et 

al., 1989; Hitch, Woodin & Baker, 1989). However, some studies have shown that 

children as young as four years are able to use verbal strategies to aid memory (Henry, 

Turner, Smith et al., 2000; Hitch, Halliday, Schaafsal et al., 1988; Hulme, 1987). 

Colour tasks involving memory components are proposed to be particularly susceptible 

to direct language strategies (Kay & Kempton, 1984; Pilling, Wiggert, Özgen et al., 

2003; Roberson & Davidoff, 2000). Berlin and Kay (1969) found that individuals from 

many different countries chose the same areas of the colour space (from an array of 

Munsell chips) when asked to indicate the best examples of the colour terms in their 

language. These most salient areas of colour space are referred to as focal colours 

(Heider, 1972). The four primary chromatic focal areas (red, blue, green and yellow) are 

proposed to be the most memorable colours (DeValois & Jacobs, 1968; Heider, 1972). 

Heider (1972) found that focal colours were recognised more accurately by English and 

Dani speakers and were named more rapidly by speakers of these languages. Studies 

carried out with children have shown that they are more likely to select and are better 

able to match (Heider, 1971), comprehend, and name focal colours than non-focal 

colours (Andrick & Tager-Flusberg, 1986). Non-focal colours take a significantly 

longer time to name and may attract a variety of non-basic and basic terms. For 

example, a colour near the category boundary between green and yellow might be 

correctly called green, yellow, lime or chartreuse (Laws, 2002). 

151 



Memory for individual colours is related to how easily they can be verbally labelled 

(Brown & Lenneberg, 1954; Lantz & Stefflre, 1964). For this reason it has been argued 

that remembering focal colours is easier, as a verbal coding strategy can be used for the 

task (Davidoff & Ostergaard, 1984; Garro 1986; Lucy & Schweder, 1979; Ridley, 

1987). An advantage of verbal coding is that labelled target colour can be retained and 

aid recognition (Pilling & Davies, 2004). Krauss (1968) showed this to be particularly 

advantageous under conditions of delayed recall. However Heider (1971; 1972) and 

Rosch (1973) pointed out that focal regions possess perceptual cognitive distinctiveness, 

and suggested that perceptual salience rather than codeability may determine how well 

colours are remembered (Pilling & Davies, 2004). It has been suggested that the 

memory advantage for focal colours may only occur on certain types of memory tasks. 

For example, Lucy and Shweder (1979) used a task in which focal and non-focal 

colours appeared equally distinctive and found significant differences for long-term but 

not for short-term memory. 

Cross-cultural research also suggests that there is a processing advantage for focal over 

non-focal colours (Roberson, Davidoff, Davies et al., 2004). In a longitudinal memory 

study, Himba speaking children, whose language includes five basic colour terms, were 

compared to English speaking children whose language includes eleven basic colour 

terms. If colour categories are universal, innate and independent of language, then the 

prediction was that both the Himba and English children who knew no colour-terms 

would share the same set of categories (eleven BCT). Both populations would also be 

predicted to demonstrate similar confusions in memory, because colours belonging to 

the same category should appear more alike than those from different categories. The 

results from the study showed that when children were unable to produce any colour 
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terms there was no memory advantage for focal terms in either language. For the 

children with no colour term knowledge, the pattern of memory performance for both 

the Himba and English speaking groups was very similar and appeared to be based on 

perceptual distance rather than a specific set of categories. However an advantage for 

the focal colours became evident in both languages once the children had begun to 

acquire colour terms. Of those children knowing at least one colour term at the first 

time of testing, English children showed superior memory performance for the items 

that were focal to only English and to those focal to both English and Himba categories 

The Himba children also showed superior recognition for those items that were focal in 

Himba and in both Himba and English categories. 

Of particular relevance to the question of how language impacts on colour memory are 

studies comparing the performance of individuals with known language deficits to those 

with typical development. Laws (2002) carried out such a study with a group of 

children with Down syndrome. Memory investigations into Down syndrome have 

revealed a selective impairment of the phonological loop component of working 

memory (Jarrold & Baddeley, 1997). The phonological loop has been implicated in 

language acquisition (Baddeley et al., 1998; Gathercole & Baddeley, 1993), and such a 

deficit would clearly impact on language development in Down syndrome (Chapman, 

1995; Fowler, 1995; Laws 1998; 2002). Indeed, deficits in expressive language in 

children and adults with Down syndrome have been described (Gibson, 1978; Chapman 

1995; Miller, 1987). 

In Laws's (2002) study, children with Down syndrome were presented with focal colour 

stimuli (typical examples of English basic colour categories) and non-focal colour 
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stimuli (those that form category boundary regions with intermediate names) in two 

experimental conditions. It was argued that if children use a verbal coding strategy, 

focal colours should be recalled more successfully than non-focal colours that are less 

easily named. As a visual processing advantage is believed to be characteristic in Down 

syndrome (Buckley & Bird, 1993; Freeman & Hodapp, 2000), it was predicted that the 

children with Down syndrome would show superior visual memory and perform better 

than controls in the non-focal colour condition. Several experimental studies have also 

shown a visual memory advantage in children with Down Syndrome. In one 

experiment contrasting auditory digit span and memory for printed digits, Broadley, 

MacDonald & Buckley (1995) reported that printed digits resulted in significantly better 

performance than that achieved with auditory stimuli alone. Memory training studies 

have also shown a significant advantage for picture memory over serial recall of words 

(Broadley & MacDonald, 1993; Comblain, 1994; Laws, MacDonald & Buckley, 1996). 

As the phonological processing deficit in Down syndrome was predicted to decrease the 

likelihood of them adopting a verbal coding strategy, they were predicted to perform 

less well on the focal colour condition than normal controls without a phonological 

processing deficit. 

As predicted, typical controls remembered the focal colours at significantly higher 

levels than the children with Down syndrome, but both groups performed at similar 

levels in the non-focal colour memory condition. Therefore, whilst the results failed to 

support superior visual memory in Down syndrome, they did show that their poor 

phonological coding impacted on their memory for focal colours 
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It is still unclear whether colour encoding is as automatic as some researchers have 

suggested it is. Park and James (1983) and Park and Mason (1982) have suggested that 

colour is encoded intentionally in memory, while others argue that it is encoded 

incidentally (Backman, Nisson & Nouri, 1993; Hatwell, 1995; Ling & Blades, 1996). 

Patel, Blades and Andrade (1999) hold that if information is encoded without effort, 

then there should be no developmental effects on recall. However, they found that 

whilst children of four were as accurate in their colour judgements as adults, they were 

much better on recognition than recall tasks. 

MEMORY AND AUTISM 

Findings from research investigating memory functions in autism have produced mixed 

results. Recognition memory has been shown to be unimpaired in high functioning 

autism (Barth, Fein & Waterhouse, 1995; Benetto, Pennington, Rogers, 1996; 

Minshew, Goldstein, Muen & Payton, 1992; Minshew, Goldstein, Tayloret al., 1994; 

Renner, Grofer Klinger, Klinger, 2000), but some impairments have been found in those 

with severe cognitive impairment (Boucher & Warrington, 1976). However, immediate 

memory span for unrelated items (Hermelin & Connor, 1967; 1975; O'Connor & 

Hermelin, 1967) and cued recall (Boucher & Lewis, 1989; Boucher & Warrington, 

1976; Tager-Flusberg, 1991) appears to be unimpaired, even in cognitively lower 

functioning individuals 

The most consistently reported deficit is in free recall, especially when categorical 

relations among items can be used to aid recall. Such deficits have been reported even in 

these cognitively impaired children with autism (Boucher & Warrington, 1976; 
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Hermelin & O'Connor, 1967), as well as those from the higher-functioning end of the 

spectrum such as individuals with Asperger's syndrome (Bowler, Gardiner, Grice et al., 

2000; Volkmar, Klin, Schultz et al., 1996). 

Using various memory tasks, Bennetto et al. (1996) found that individuals with autism 

showed performance deficits in temporal order memory, source memory sentence and 

digit span, as well as on executive function tasks, such as the Wisconsin Card Sorting 

task and The Tower of Hanoi task. However, short and long term recognition and cued 

recall were unimpaired. Other researchers have found that individuals with autism only 

show poor performance on memory tasks requiring cognitive flexibility (Ozonoff & 

Strayer, 2001; Ozonoff & McEvoy, 1994). This lack of flexibility in children with 

autism manifests in a tendency to identify specific rules and apply them universally, 

whereas typically developing individuals change response strategies as the situation 

demands (Frith, 1970). 

It is not clear whether children with autism are able to use semantic information to aid 

memory recall. For example, in one visual recognition memory task, Ameli, 

Courchesne, Lincoln et al., (1988) found that autistic subjects performed well with 

meaningful stimuli but poorly with meaningless stimuli, a pattern of performance 

consistent with semantic encoding seen in typical development. However, Tager- 

Flusberg (1991) found that children with autism were significantly poorer than matched 

controls at recalling lists of semantically related words in comparison to lists of 

semantically unrelated words. Frith (1970) observed deficits on studies using colour 

sequences, and suggested that difficulties in utilising semantic knowledge to aid 

memory in autism may not be limited to verbal material. 

156 



A more recent study of working memory in high functioning children with autism 

revealed impairments in using verbal encoding and rehearsal strategies (Joseph, Steele, 

Meyer & Tager-Flusberg, 2005). Working memory was assessed using verbal and non- 

verbal variants of a non-spatial, self ordered pointing test (Petrides & Milner, 1982). In 

the experiment children were required to point to a new stimulus in a set upon each 

presentation without repeating a previous choice. In a verbal condition, the stimuli were 

not easily named or verbally encoded. Participants were also administered a verbal span 

task to assess non-executive verbal rehearsal skills. The group with autism performed 

significantly less well in the verbal, but not the non-verbal self-ordered pointing test. 

However the autism and control group showed equivalent verbal rehearsal skills. 

Koshino, Carpenter, Minshew et al., (2005) looked at whether individuals with autism 

might adopt a more visually orientated strategy in an n-back working memory task. In 

this experiment, individuals were shown sequences of twenty letters across three 

experimental conditions (0-back, 1-back, 2-back). In the 0-condition, participants were 

shown a target letter at the beginning of the sequence and told to respond when they 

saw the target letter. In the 1-back condition participants were told to respond when the 

same letter was presented twice in a row, and in the 2-back condition they were to 

respond when a letter matched the one previously presented in the sequence. Thus the 

working memory load was manipulated across conditions, but the visual information in 

the letter sequences remained constant. In line with the experimental hypothesis, 

imaging data showed less activation in the anterior regions and more activation in the 

posterior regions associated with visual processing in the autism group than in the 

control group. This finding is consistent with previous research showing reduced 
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activation in the regions associated with higher level cognition in autism compared to 

controls (Just et al., 2004; Ring, Baron-Cohen, Wheelwright et al., 1999). 

Such atypical information processing has also been highlighted in studies showing 

increased right hemisphere activation in response to speech stimuli in autism (Boddaert 

& Zilbovicius, 2002; Muller, Behen, Pierce et al., 1999). The processing of verbal 

information is typically seen to activate more regions in the left hemisphere in normal 

controls, whereas processing of nonverbal and spatial information is associated with 

right hemisphere processing (Owen, Stern, Look et al., 1998; Smith & Jonides, 1999, 

Smith, Jonides, Marshuertz et al., 1998). However, left hemisphere activation in 

response to nonverbal and spatial information may be seen in normal controls if they 

use phonological codes to encode stimulus. Increased right hemisphere activation in 

autism may occur because they code shapes without naming them (Boddaret & 

Zilbovicius, 2002; Muller et al., 1999). Koshino et al., (2005) propose that the neural 

architecture of the brain in autism differs to that of the typically developing brain, and 

that weaker anterior memory activation in autism could reflect a greater reliance on 

visual features. Koshino et al., 2005 also found less synchronisation among brain areas 

in autism compared to control groups, therefore providing further support for the 

previously mentioned underconnectivity theory proposed by Just et al., 2004. 

The three experiments to be presented in this chapter investigated memory for colours 

or colour labels. The rationale for the studies is that individuals with autism are 

proposed to rely on visual coding strategies to a greater extent and verbal coding 

strategies to a lesser extent than those with typical development (Koshino et al., 2005). 
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A paired-learning paradigm, in which children were exposed to a picture of an animal 

paired with either a colour or a colour name in familiarisation phases, was used in all 

three studies. In the test phases, children were shown the pre-exposed animals together 

with the original pre-exposed colour and three distractor colours (experiments nine and 

ten), or with the pre-exposed colour word and three distractor colours words 

(experiment eleven). Children were required to point to the target they had previously 

seen paired with the animal currently on view. In experiments nine and eleven, a 

verbal or perceptual encoding strategy could facilitate task success. However, for 

experiment ten, a verbal encoding strategy would be unsuccessful as distractor colours 

were different exemplars drawn from the same colour categories. 

EXPERIMENT NINE - COLOUR MEMORY AND LABELS (1) 

Procedure & Participant Sample 

The participant sample was the same for all of the three experiments reported in the 

chapter. Thirteen children with HFA aged between 7 years 11 months to 15 years 0 

months (mean 10.9) with non-verbal IQ ranging between 78-109 (mean 91.17), and 

thirteen children with LFA aged between 7 years and 2 months to 15 years and 8 

months (mean 11.4) with non-verbal IQ ranges ranging between 55-69 (mean 62.15) 

were matched with children with TD and MLD respectively, for age, gender and non- 

verbal IQ scores using Ravens Matrices (Raven, Court, Raven 1988). The children's 

psychometric data are shown in table 5.1. 
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Table 5.1: Psychometric data for the participants 
Group Age 

Mean sd 

Ravens 

Mean sd 

BPVS 

Mean sd 

Verbal 

Mental Age 

Mean sd 

11.2 2.52 76.31 16.87 56.12 12.23 6.30 1.56 
Autism=26 

10.9 2.69 91.17 10.75 64.42 9.75 7.2 1.59 
HFA=13 11.4 2.46 62.15 6.82 47.69 8.41 5.4 0.91 
LFA=13 

Controls=26 11.21 2.24 76.38 16.77 77.00 21.63 8.47 2.68 

TD=13 10.8 2.45 89.07 13.33 89.00 21.58 9.9 3.12 

MLD=13 11.5 2.07 65.54 7.73 62.23 10.31 7.1 0.97 

Apparatus 

The colours used in the experiment were generated the same way as in experiment six 

(colour discrimination task) reported in chapter four. The experiment was written in e- 

prime and presented on a computer. Animal pictures were taken from the Snodgrass and 

Vanderwart (1980) Picture Norms set. Colours remained on screen until the children 

responded 

Stimuli 

Four Focal colours red, blue, green, yellow all of 5 hue and were 100* 100 pixels in size. 

All colours were kept brightness (level 6) and saturation (level 6). Animals were bmp 

images of a dog, cat, rabbit and pig and were 200*200 pixels in size. 

Familiarisation Trials: The children were told that they were to see each of the animals 

again and had to point to which was the animal's favourite colour. Children saw an 

individual animal with its colour four times each (16 times in total). They saw a pig with 

green (5G 6/6) a dog with a red (5R 6/6) a cat with a blue (5B 6/6) a rabbit with a yellow 

(5Y 6/6). The animal was shown directly above the colour patch with 2cm in between 

(example of stimuli is shown in appendix). 
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Experimental Trials: This experiment adopted a paradigm used previously for 

determining pitch memory in autism (Heaton et al., 1998; Heaton, 2003). The children 

were told that they were to see each of the animals again and had to point to which was 
the animal's favourite colour. This time the children saw each animal individually appear 

on the screen with all four colour patches underneath. The children were asked to point 
to which of the colours was that particular animal's favourite colour. The stimuli 

remained on screen until the children gave a response by pointing to the one of the 

colours. Responses were made by the experimenter via the computer which recorded the 

individual responses. The children had four attempts at each animal (16 trials). Animals 

were shown in a random order. 

Results 

Table 5.2: Means and standard deviation for all participants on experiment nine 

Group Mean Standard deviation 

Autism=26 6.65 4.09 

HFA=13 8.00 4.59 

LFA =13 5.31 3.17 

Controls=26 8.81 5.19 

TD=13 10.69 5.22 

MLD=13 6.92 4.59 

*Optimal score =16 

** scores below 6 equal chance (Binomial test) 

An initial Analysis of Variance revealed no significant differences between the children 

with autism and controls (F(1,51)=2.76, n. s. ). However, as cognitive impairment had 

been shown to have significant effects in the experiments reported in chapter four, a 

second analysis with four groups (HFA, LFA, TD, MLD) as the between-group factor 
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was carried out. This analysis revealed a significant main effect of group, 

(F(3,5 1)=0.3 56, p<. 05) which is shown in Figure 5.1 below 

Figure 5.1: Significant main effect of group on experiment nine. 
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Independent t-tests with Bonferroni adjustments were carried out on the main effect. 

These showed no significant difference between groups with HFA and LFA, 

(t(24)=1.74, n. s. ), between groups with HFA and TD (t(24)=-1.39, n. s. ), between groups 

with HFA and MLD (t(24)=. 59, n. s. ), between groups with TD and MLD (t(24)=1.96, 

n. s. ) and between groups with LFA and MLD (t(24)=-1.044, n. s. ). The only comparison 

that reaches statistical significance was the TD and LFA comparison (t(24)=3.18, 

p<. 05). 

Correlations carried out on the complete data set showed that test scores did not 

correlate with age (r = 1.77, n s. ) or non-verbal IQ (Ravens Matrices) (r = . 
19, n. s. ). 

However, there was a significant correlation between verbal IQ (BPVS) and test scores 
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(r=. 39, p<. 01). This pattern of correlations was seen again when the data from the two 

groups without autism (TD & MLD) was pooled. Correlations between test scores and 

age (r = . 18, n. s. ) and test scores and non-verbal IQ verbal IQ (r = . 16, n. s. ) were not 

significant, but the correlation between test scores and verbal IQ reached significance (r = 

. 39, p<. 05). For the pooled autism data (HFA & LFA), test scores did not correlate with 

any of the matching variables (age, r=1.8, n. s.; non-verbal IQ, r= . 24; verbal IQ, r= 

. 20, n. s. ). These correlations showed that whilst the most verbally able children without 

autism showed the best test performance, this pattern was not seen in the autism group. 

EXPERIMENT TEN - COLOUR MEMORY AND PERCEPTION 

Apparatus same as experiment nine 

Stimuli: Four focal colours red, blue, green, yellow all of 1 hue, 5 hue and 9 hue and were 

100* 100 in size. All colours were kept at brightness level six and saturation level six. 

Animals were the same as experiment nine. 

Procedure 

The familiarisation trials were exactly the same as for Experiment Nine. However, this 

time the children were asked to look very carefully at the animals' favourite colours and 

to try to remember the exact colour. In the experimental trials the children were shown 

the same animals again, but this time underneath the animal were three colour patches of 

the same colour (1 hue, 5hue, 9 hue of either blue, green, yellow, red) with 5 hue of each 

colour being the original paired with animals. The results from experiment six (chapter 

four) had provided information about colour discrimination levels in participants of this 

age and the hues were 1,5 and 9. The position of the colours was randomised as was the 

order of presentation of the stimuli. Again, the children responded by pointing to the 

correct colour patch on the computer and the experimenter entering the response on to the 

computer. The stimuli remained on screen until the children gave a response by pointing 

to the one of the colours. Example of the stimuli is shown in the appendi 
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Table 5.3 shows the means and standard deviations for the correct number of 

identifications in experiment in experiment ten. 

Table 5.3: Means and standard deviations for participants' correct scores in 

experiment ten. 

Group Mean Std. dev. 

Autism=26 5.38 2.65 

HFA=13 4.15 2.82 

LFA=13 6.62 1.85 

4.23 1.95 
Controls=26 

4.54 2.82 
TD=13 

3.92 1.44 
MLD=13 

*Optimal score =16 

An initial Analysis of Variance revealed no significant differences between the children 

with autism and their controls on experiment nine (F(1,51)=3.196, n. s. ). Again a second 

analysis in which they are subdivided in four groups (HFA, LFA, TD, MELD) was 

carried out. This analysis revealed a significant main effect of group which is shown in 

Figure 5.2 overleaf 
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Figure 5.2: Main effect of group in experiment ten 

Independent t-tests with Bonferroni adjustments were carried out on this data. These 

showed no significant difference between groups with HFA and LFA (t(24)=-2.62, n. s. ), 

FIFA and TD (t(24)=-3.76, n. s. ), HFA and MILD (t(24)=. 26, n. s. ), TD and MLD 

(t(24)=. 801, n. s. ) and TD and LFA (t(24)=-2.49, n. s). Only the LFA and MILD 

comparison reached statistical significance (t(24)=4.14, p<. 001). 

The target stimuli (5hue) and the different distractor patches (1 hue and 9hue) fell within 

category for the blue and green categories. However, some distractor patches fell 

outside of the target category for the red and yellow, and these were analysed 

separately. Table 5.4 shows the means and standard deviations across colour categories 

for experiment ten and the pattern of results is illustrated in figure 5.3. 
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Table 5.4: Means and standard deviations for the different colour categories on 

experiment ten. 

Group Blue 

Mean sd 

Green 

Mean sd 

Red 
Mean sd 

Yellow 

Mean sd 
HFA 1.23 1 

. 
01 0.85 1.14 0.85 0.80 1.13 1.16 

LFA 2.00 1 
. 
00 1.31 0.86 1.69 0.95 1.62 1.04 

TD 1.38 1 
. 
19 1.15 1.41 0.69 0.75 1.46 1.19 

MLD 1.00 1 
. 
00 1.15 0.80 0.92 0.86 0.85 0.80 

*Optimal Score=6 for each colour. 

Figure 5.3: Mean number correct across colour categories on experiment ten. 

An initial analysis of variance was carried out on the total number correct on experiment 

ten on the blue and green categories for the main two groups. Groups (autism/controls) 

was the between factor and condition (number correct on blue and green) as the within 
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group factor. The analysis showed no significant main effect of group, F(1,50)=. 62, 

n. s. ), no significant main effect of condition, F(1,50)=2.05, n. s. ) and no significant 

group by condition interaction, F(1,50)=1.54, n. s. ). 

An analysis of variance was then carried out on the total correct for blue/green range on 

the four subgroups. This showed no significant main effect of group (F(3,48)=1.73, 

n. s. ) and no significant main effect of condition (F(l, 48)=2.00, n. s. ). There was also no 

significant group by condition interaction (F(3,48)=0.74, n. s. ). 

A second analysis was carried out on the total number correct on experiment ten on the 

red and yellow categories for the main two groups. Group (autism/controls) was the 

between factor and condition (number correct on red and yellow) as the within group 

factor. The analysis showed no significant main effect of group, F(1,50)=2.83, n. s. ), no 

significant main effect of condition, F(1,50)=2.28, n. s. ) and no significant group by 

condition interaction, F(1,50)=3.37, n. s. ). 

An analysis was then carried out on the four subgroups for the red and yellow 

categories. Again there was no significant main effect of group (F(3,48)=2.54, n. s. ) or 

condition (F(1,48)=2.39, n. s. ). There was also no significant group by condition 

interaction (F(3,48)=1.59, n. s. ). 

Correlations were carried out and showed that for the autism group memory recall of 

green and blue did not correlate with performance on the BPVS (r=-. 38, n. s. ), Ravens 

Matrices (r=-. 13, n. s. ) or age (r=-. 032, n. s. ). Similarly, memory recall for the red and 

yellow stimuli showed no correlation with BPVS (r=-. 28, n. s. ), Ravens Matrices (r=. 17, 
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n. s. ) or age (r=-. 14, n. s. ). The same pattern emerged for the control groups. Again 

memory recall of green and blue did not correlate with performance on the BPVS (r=. 21, 

n. s. ), Ravens Matrices (r=. 21, n. s. ) or age (r=-. 104, n. s. ). Memory recall for the red and 

yellow stimuli also showed no correlation with BPVS (r=. 032, n. s. ), Ravens Matrices 

(r=. 22, n. s. ) or age (r=-. 089, n. s. ). 

Correlations were then carried out on the complete data set (all colours and all groups). 
These showed no significant effects of age (r = -. 05, n. s. ) or non-verbal IQ (Ravens 

Matrices) (r = -. 21) and test scores. However there was a significant negative correlation 
between verbal IQ (BPVS) and test scores (r=-. 30, p<. 05). When the data from the two 

groups without autism (TD & MLD) was pooled, no correlations reached significance 

(age and test scores, r=-. 11, n. s.; non-verbal IQ and test scores, r= . 10, n. s; verbal IQ 

and test scores, r= . 
04, n. s. ). For the pooled autism data (HFA & LFA) test scores did 

not correlate with age (r = -. 21, n. s. ). However, there were significant negative 

correlations between test scores and non-verbal IQ (r = -. 59, p<. Ol) and test scores and 

verbal IQ (r=-. 47, p<. 04). The finding that the least able children performed at the 

highest levels on this task will be further investigated. 

EXPERIMENT ELEVEN - COLOUR MEMORY AND LABELS (2) 

Procedure 

Stimuli 

Four bmp images of animals (chicken, swan, duck, cow) and four colour words (RED, 

YELLOW, GREEN, BLUE) typed in Times Roman Font Size 16. 

Procedure 

The procedure was the same as for Experiment Nine, but this time the children saw 

animals with colour names. A different set of animals was used. Children were told that 
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they would see an animal with a colour name and that they had to try and remember 
which colour name they saw with which animal. As with the previous experiments, they 

saw an animal with a colour word 2 cm underneath (Swan with RED, Cow with BLUE, 
Chicken with GREEN and a Duck with YELLOW. They saw each animal and its colour 
word four times each in a random order (16 trials). Before the testing trials began, the 

children were told they would see each animal again with a choice of four colours. They 

were told to point to the colour they had seen previously with the animal. In order to have 

a suitably large print the colours were presented down the right hand side of the screen 

rather than below. Children responded by pointing to one of the colours. Responses 

were recorded by the experimenter pressing a key that registered the response that the 

child made. The stimuli remained on screen until the children gave a response by 

pointing to the one of the colours. Examples of the stimuli is shown in the appendix. 

The means and standard deviations for accurate identification of colour words are shown 
in table 5.5 below. 

Table 5.5: Means and standard deviations for correct identification of colour words 
in experiment eleven 

Group Mean Sd 

Autism=26 7.85 4.91 

HFA=13 10.08 5.14 

LFA=13 5.62 3.59 

Controls=26 8.38 5.32 

TD=13 10.92 4.94 

MLD=13 5.85 4.54 

* Optimal score= 16 

Again, an initial Analysis of Variance revealed that there were no significant differences 

between the children with autism and the controls on experiment eleven (F(1,51)=0.144, 

n. s. ). However, the sub-group analysis did reveal a significant effect of group 

(F(3,51)=4.75, p<0.05) which is shown in figure 5.4. 
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Figure 5.4: Main effect of group on experiment eleven. 

Independent t-tests with Bonferroni adjustments were carried out on this data. These 

showed no significant differences between the groups with HFA and LFA (t (24)=2.56, 

n. s. ), HFA and TD (t (24)=-. 43, n. s. ), HFA and MLD (t (24)=2.22, n. s. ), TD and MLD 

(t (24)=2.73, n. s. ) or LFA and MILD (t (24)=-. 14, n. s. ). Only the comparison between 

groups with TD and LFA reached statistical significance (t (24)=3.13, p<. 05). 

Correlations carried out on the complete data set showed no significant effects of age 

(r = . 
00, n. s. ). However, the non-verbal IQ and test score correlation was significant 

(r= 
. 
46, p<. Ol) as was the verbal IQ and test scores correlation (r=. 44, p<. 01). This 

pattern of correlations was seen again when the data from the two groups with autism 

(HFA & LFA) was pooled: correlations between age and test scores were not significant 

(r = -. 00, n. s. ) but correlations between test scores and non-verbal IQ (r = . 
54, p<. Ol) 

and test scores and verbal IQ (r = . 
50, p<. Ol) were significant. For the pooled control 

participants data (TD & MLD) test scores did not correlate with age (r =. 00, n. s. ). The 

correlation between tests scores and non-verbal IQ approached statistical significance 
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(r =. 38, p<. 054) and the correlation between verbal IQ and test scores was significant 

(r =. 50, p<. 01). 

ANALYSIS OF DATA FROM EXPERIMENTS NINE, TEN AND ELEVEN. 

Levels of performance across the three experiments presented in this chapter are shown 

in figure 5.5 below. 

Figure 5.5: Performance across experiments nine, ten and eleven. 
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In order to further explore group performance across the three experiments, 

transformations were carried out on the data. Although the two intelligence measures 

used in the studies (Ravens matrices and BPVS) were highly correlated within groups 

(Autism, r= . 
82, p<. Ol; Controls, r= . 

84, p<. 01), it was interesting to see whether 

participants within the autism group with a significantly lower verbal than non-verbal 

IQ would rely on verbal labelling to a lesser extent than those without such a 

discrepancy. Therefore a measure of relative language ability was generated by the 
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subtraction of non-verbal IQ scores (Ravens matrices) from verbal IQ scores (BPVS). 

The second new measure was a positive score for verbal labelling. This was computed 

by subtracting the scores from experiment ten (that did not rely on verbal labelling), 

from the averaged scores for experiments nine and eleven (that did rely on verbal 

labelling). Correlations carried out on these two variables were positive and significant 

for the pooled control data (TD and MLD) (r= 
. 
54, p<. 01) showing that the presence of 

relative language ability co-occurs alongside positive verbal labelling ability. This is 

illustrated in figure 5.6. 

teure 5.6 Scatterplot for positive correlation between positive verbal labelling 

and relative language ability in control participants. 
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The correlation between the language difference score and the positive verbal labelling 

score for the autism group was negative but not significant (r =- . 
22, n. s. ). This is 

shown in figure 5.7 
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Figure 5.7 Scatterplot showing non-significant correlation between positive 

verbal labelling and relative language ability in participants with autism 
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This finding suggests that the participants with autism for whom verbal IQ is relatively 

unimpaired in relation to non-verbal IQ (verbal IQ - non-verbal IQ difference score) do 

not appear to do better on positive verbal labelling than those with greater relative 

language impairment. This was further investigated. Correlations between pooled, 

averaged scores for experiments nine and eleven (verbal labelling experiments) and 

verbal IQ were significant for both the autism group (r = . 
5, p<. 01) and controls groups 

(r = . 
43, p<. 0l). However, whilst there was a significant positive correlation between 

these pooled averaged scores and non-verbal IQ in the autism group (r = . 
48, p<. 05), 

this was not significant for controls (r = . 
3, n. s. ). 
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Correlations carried out on data from experiment ten (perceptual memory) were 

significant and negative for both non-verbal IQ (r = -. 47, p<. 05) and verbal IQ (r = -. 59) 

for the autism group. Neither correlations (non-verbal IQ and experiment ten, r= . 
1, 

n. s.; verbal IQ and experiment ten, r= . 
04, n. s. ) were significant for controls. These 

correlations confirm that within the autism group, low IQ, both verbal and non-verbal 

are associated with good perceptually based memory performance. 

DISCUSSION 

The experiments in this chapter tested the hypothesis that participants with autism 

would rely on visual coding strategies to a greater extent and verbal coding strategies to 

a lesser extent than age and intelligence matched controls. The findings from the 

studies provided limited support for the hypothesis in that this appeared to be the case 

for participants with autism who possessed additional non-verbal and verbal 

impairments only. 

In experiment nine, where verbal labelling would seem likely to result in optimal 

performance, typically developing children achieved the highest test scores, and four of 

the thirteen TD participants achieved a ceiling score of sixteen. Two of the participants 

with HF with autism and two with MELD also performed at ceiling on the task, and 

performance for neither of these groups was significantly poorer than that of the 

children with typical development. The LFA group mean was significantly poorer than 

that of the TD group and many participants performed at chance levels. 

The findings from experiment ten showed a reversal in the pattern of performance 

across participant groups. Although experiment ten was very similar to experiment nine 
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in requiring participants to encode a colour and an animal in memory, the response 

options in the test phase all had the same colour label, and successful retrieval depended 

on perceptual memory. The results from the experiment showed that participants with 

LFA performed at significantly higher levels than those with typical development. 

Performance across the three groups without LFA did not show significant differences. 

There was also no significant difference across colours. For the red and yellow stimuli, 

it could have been predicted that memory recall may have been easier than for blue and 

green, as distractors fell across category to the target colour. However the children from 

all groups showed a similar level of performance across colours. 

Experiment eleven also required paired learning, but here verbal labels were made 

explicit and there was no exposure to colours in the familiarisation trials. In this 

experiment, the HFA and TD groups performed at similar levels, and whilst the 

performance of the participants with MLD was lower than that of the two cognitively 

impaired groups this did not reach statistical significance. The lowest levels of 

performance were seen in the LFA group and the difference between their scores and 

those of the TD children was statistically significant. 

An analysis of the data from the three experiments was carried out. An important aspect 

of this was to investigate IQ and task performance correlates. Although control 

participants were closely matched for chronological age and scores on Raven's 

matrices, autism is characterised by an uneven profile of cognitive abilities, and 

language abilities are sometimes lower than would be predicted on the basis of non- 

verbal intelligence. It was interesting that whilst the participants with MILD achieved 

lower overall performance than the other group without autism (TD), their pattern of 
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performance was also similar, especially on experiments nine and ten that did not 

require reading ability. It is therefore clear that low IQ does not result in compromised 

verbal memory strategies and reliance on perceptual memory. It was also interesting 

that the participants with HFA, whose verbal IQ scores were very similar to those of the 

MILD participants, showed a level and pattern of performance that was much more like 

that of the cognitively unimpaired TD controls. 

When a difference score, that took into account any potential discrepancies between 

verbal and non-verbal IQ, was correlated with a positive labelling score that was derived 

from the scores for the three experiments, the data for the participants without autism 

was significant and positive. This showed that participants without a large discrepancy 

between non-verbal and verbal IQ scores performed well in experiments where verbal 

labelling would be expected to convey an advantage. When this was directly 

investigated in correlations between verbal IQ scores and pooled averaged scores from 

experiments nine and eleven, these were also found to be positive and significant. 

Correlations carried out on these scores and non-verbal IQ data were not significant. 

Neither verbal nor non-verbal IQ data correlated with performance on experiment ten 

that tested perceptual memory. Taken together, the data from the participants without 

autism showed that performance levels were highest in experiments where memory 

could be facilitated by verbal labelling. The extent to which this facilitation occurred 

was largely determined by the individual participant's verbal intelligence. 

The results of the analysis of the data from the groups with autism revealed a very 

different pattern to that of the controls. When correlations between the language 

difference scores and the positive labelling scores were carried out, this was non- 
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significant and negative. This meant that individuals who did not have a much lower 

verbal than non-verbal IQ did not appear to show increased verbal labelling. Analysis 

of the pooled averaged data for experiments nine and eleven, like the control group data, 

correlated positively with verbal IQ. However, unlike the control data, these scores also 

correlated with non-verbal IQ. The analyses of the individual studies had shown that 

the performance of the IHFA group was frequently very similar to that of the TD 

controls with whom they were matched on non-verbal IQ. Furthermore, non-verbal and 

verbal IQ correlated in the autism group, and HFA participants also possessed higher 

verbal IQ than the low functioning group. Most striking of all was the finding that 

scores for experiment ten, that tested perceptual memory, correlated negatively and 

significantly with both verbal and non-verbal IQ. This clearly showed that the LFA 

participants, but not HFA participants, were advantaged on a task that relied on 

perceptual memory. This finding will be discussed with reference to the findings from 

the studies reported in chapter four and current theories of autism and colour processing. 

In experiment five, reported in chapter four, comprehension of colour names was found 

to be unimpaired in autism. With the exception of a small group of children who may 

have had generally poor productive language, colour naming was also good. Even the 

children who had difficulty in naming colours knew which colour names matched the 

presented colour chips. When considered in the light of the findings from the current 

chapter, it appears that whilst children with low functioning autism readily acquire 

colour terms, these tend to influence their processing of colour stimuli to a smaller 

extent than is usual. It was also interesting that these children appeared to rely more 

heavily on perceptual information in memory than cognitively impaired children 

without autism. 
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In experiment six, reported in chapter four, neither high nor low functioning children 

with autism performed better than controls without autism on the perceptual 

discrimination task. Indeed the LFA group showed the lowest levels of performance 

overall. It therefore does not appear that qualitatively different performance seen in the 

LFA group in experiment ten can be a result of enhanced perceptual processing in 

autism. Furthermore, the participants with TD, HFA and MLD who had also 

participated in experiment six were easily able to discriminate colours at perceptual 

distances similar to those used as distractors in experiment ten. It may then be the case 

that their performance was poor because the memory representations laid down in the 

training trials were primarily linguistic, and the level of perceptual detail encoded was 

not sufficient to meet task demands in experiment ten. Verbal IQ correlated positively 

with performance on the two experiments (nine and eleven) where verbal encoding 

would lead to good performance in the participants without autism, and there was no 

correlation between task performance and non-verbal IQ, a result that reflected the good 

performance of some MLD participants. It was particularly interesting, given that 

enhanced perceptual processing has been proposed to characterise autism regardless of 

intellectual level and that language is an area of difficulty in autism, that the group with 

HFA also performed better on the experiments where verbal encoding facilitated good 

task performance. 

In the discussion of chapter four, atypical perceptual categorisation was attributed to 

atypical language in HFA. Specifically, it was suggested that a tendency towards 

concrete and literal language would result in narrow category boundaries. However, 

such effects are likely to be subtle, primarily influencing stimuli that possess a degree of 

ambiguity (e. g. category boundary colours). In experiment five (chapter four), the HFA 
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participants had achieved ceiling performance on the colour word comprehension and 

production task, and the colours presented with the animals in the training trials in 

experiment ten were typical exemplars of their colour categories. These factors might 

well contribute to the adoption of a verbal memory strategy. Also relevant is the fact 

that participants completed experiment ten after they had completed experiment nine, 

and there was no indication in the training trials for experiment ten that distractor 

colours in the test trials would be drawn from the same colour categories and a verbal 

coding strategy would be ineffective. 

The findings from the LFA group were striking in that exceptional performance on 

experimental tasks is rarely seen in the least intellectually able participants. Whilst 

these individuals did not show enhanced perceptual processing of colours, they 

appeared to have encoded more of this type of information during the familiarisation 

trials. Whilst it is clearly the case that this should have resulted in good performance on 

both experiments nine and ten, their levels of performance across the two experiments 

did not show large changes, and the small increase in test scores on experiment ten may 

reflect increasing familiarity with the experimental paradigm. It could also be argued 

that the perceptual features of the written colour words would have increased saliency 

for the LFA participants, thereby enabling them to perform as well on this condition as 

the MILD controls, who were clearly unable to adopt a perceptual encoding strategy 

(experiment ten). It thus appears that cognitively impaired individuals with autism 

differ from individuals in whom these disabilities do not co-occur in encoding more 

perceptual than verbal information. This will be further discussed in the final chapter. 
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In the following chapter a case study of an able boy with Asperger syndrome (J. G. ) and 

an obsession with the colour blue will be presented. J. G. completed the experimental 

tasks presented in chapters four and five, and for comparison purposes his data will be 

compared to that of the participants with HFA and TD who participated in these earlier 

studies. 
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CHAPTER SIX 

INVESTIGATING THE IMPLICATIONS OF COLOUR OBSESSIONS IN AN 

ABLE BOY WITH ASPERGER SYNDROME 

Summary: In this chapter the case of J. G., an eleven year old boy with Asperger 

syndrome and an obsession with the colour blue, is reported. Background information 

on J. G. was derived from interviews with J. G. and his mother, as well as from school 
I 

reports. Assessment using the Sensory Profile test (Dunn, 1999) revealed significant 

difficulties across all sensory modalities, in relation to norms derived from both typical 

and developmentally atypical populations. The findings from experimental studies 

showed that J. G. improved reading performance with a self-selected overlay that 

corresponded to his colour obsession. However, he showed no colour vision 

abnormalities as measured by the City University Colour Test (3rd edition; Fletcher, 

1998) or the Ishihara Colour vision test (Ishihara, 1970), and performed at ceiling on 

tests of colour word production and comprehension. Further results revealed exceptional 

perceptual discrimination of avoided colours and poor perceptual discrimination of blue. 

J. G. showed a similar pattern of performance to other HFA participants on a task 

assessing category boundaries across the blue/purple range, although further analysis 

showed that his blue category was narrower and his green category was broader than 

theirs. His cross-category discrimination scores were consistently at ceiling. On three 

experiments assessing memory, J. G. 's performance was consistent with a verbal colour 

memory strategy. The results from J. G. 's tests were interpreted within the context of 

the findings from group studies described in the earlier chapters and current theories of 

autism and colour processing. 
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BACKGROUND 

The subject of this chapter, J. G., first underwent formal diagnostic testing between the 

ages of three and a half to four years old. During this time he was formally diagnosed 

with an autism spectrum disorder (Asperger Syndrome), and was also found to be 

suffering from Attention Deficit Hyperactivity Disorder and Verbal/Spatial dyspraxia. 

Data from the Children's Communicative Checklist (Bishop, 1998) were collected 

during this time, and confirmed that his profile of communicative strengths and 

weaknesses was consistent with that characteristic of Autism Spectrum Disorders. 

J. G. has an older brother with dyslexia and many autism spectrum characteristics, and 

his parents noted unusual behaviours in J. G. from birth. For example, he responded 

very negatively to physical contact and seemed most as ease when left on his own. His 

development was extremely uneven with normal or good development in walking and 

potty-training and poor development of language. Some savant abilities were in 

evidence early on, and he is reported to have been able to dismantle complicated 

electrical equipment and clocks by the age of two years. Consequently J. G. 's parents 

ensured that the house was rewired so that electrical equipment could be overridden 

using one switch. 

J. G. 's language onset was significantly delayed, and he did not attempt to speak until 

around the age of four. Currently, J. G. 's speech is immature, and even though he 

appears to know many words, he experiences difficulty in formulating them into 

sentences. He has particular difficulty in comprehending ambiguous sentences, and 

interprets language extremely literally. A recent example of this occurred when his 
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parents received a letter from his school reporting that a teacher had brought head-lice 

into the school. He apparently believed that the teacher in question had arrived with a 

sack full of these creatures. In a similar vein, in response to being told that his 

computer had a virus, he taped up the cracks around the door of the room in which the 

computer was located. J. G. is unwilling to celebrate his birthday until the exact time of 

his birth on the day, and he always insists that a birthday cake (for Jesus) is produced on 

Christmas Day. 

Since his earliest childhood, J. G. has favoured dark colours, particularly blue and 

purple. His family have reported early incidents during which he attempted to "dye" 

clothes blue, and even attempted to paint the family dog blue. Within the family home, 

all attempts are made to provide J. G. with a stress free environment. His bedroom is 

painted purple and black, all of his clothes except his football kit are blue, and the 

family car is blue with a purple interior. J. G. enjoys painting model soldiers, and 

because all the figures are painted blue, black and purple, his hobby is a means by 

which his colour obsession can be satisfied. 

J. G. has very strong reactions to certain classes of sensory input. For example, he 

reports pain in his eyes ("hot eyes") in response to bright colours, and exposure to such 

colours sometimes results in hyper-excitability and nausea. He dislikes all types of 

light and does not have lights in his bedroom. Although his tolerance for certain 

colours has improved with age, he continues to carry his sunglasses around with him, 

even indoors. The behavioural consequences of J. G. 's visual processing difficulties 

have been debilitating, and have sometimes been difficult to manage For example, he 

is unable to sleep in a room or travel in a car that is not blue, purple or black in colour. 
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J. G. prefers to eat food that is white or has little colour, such as cottage cheese, potatoes, 

bread and white lettuce. Whilst his tolerance for coloured food is increasing over time, 

he is still unable to tolerate more than two colours on a plate, especially if they have a 

strong smell. Thus, for example, whilst he can eat cottage cheese with spinach or baked 

beans, he will become nauseous if all three are presented together. 

PSYCHOMETRIC DATA AND ACADEMIC HISTORY 

An initial assessment, using the Weschler Intelligence Scales for Children (WISC) (3rd 

edition) showed that Full Scale IQ was 104, Performance IQ was 105 and Verbal IQ 

was 102. Although these scores were within the normal range, Figure 6.1 illustrates the 

wide variation in levels of performance across the different subtests. 

Figure 6.1: J. G. 's score on the WISC 
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From Figure 6.1 it can be seen that J. G. shows a very uneven pattern across different 

cognitive domains. Across performance subtests, he shows particular strengths in 

respect of picture completion (identifying missing parts of pictures) and coding 

(transcribing a digit symbol code as quickly as possible), whilst he shows particular 

weaknesses on symbol search (deciding if target symbols appear in a row of symbols 

and marking either yes or no accordingly). He demonstrates reasonable performance on 

tasks measuring perceptual organisation (picture completion and arrangement, block 

design, object assembly). However, he shows a disjointed pattern on tasks measuring 

processing speed, with excellent performance on coding but weaker performance on the 

symbol search task. 

Across verbal subtests, he shows good performance on information (oral trivia style 

questions) and similarities (explaining how two different things, like horses or cows or 

concepts like hope and fear, could be alike), but demonstrates weaknesses on 

comprehension (oral questions of social and practical understanding) and vocabulary 

(giving oral definitions for words). He shows average performance across tasks 

measuring freedom from distractibility (attention, concentration and working memory) 

such as arithmetic and digit span tasks. His verbal comprehension (as measured by the 

information, similarity, vocabulary, and comprehension sub-tests) is uneven. Although 

he shows good performance on the tasks assessing general knowledge and 

understanding of information (information and similarity), his performance is poor on 

tasks requiring a higher level of verbal explanation (vocabulary and comprehension). 
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Although J. G. 's global IQ score is within the normal range, he attends a school for 

children with special needs. J. G. 's parents believe that his sensory difficulties are the 

main barrier to being able to cope with mainstream school life, but it seems likely that 

his uneven intellectual skill profile, especially his poor language comprehension, would 

create difficulties were he to be educated within the mainstream education system. 

Within his special needs school, J. G. receives support from the Speech and Language 

Services and the Autism Spectrum Disorders (ASD) department. 

J. G. 's social skills are unusually good for a child with an autistic spectrum disorder, and 

his school report notes that he is "a friendly, helpful boy who is popular with his peers". 

Whilst certain situations cause J. G. anxiety, his teacher notes that "he has worked at 

using coping strategies and has improved in self-confidence". J. G. also enjoys the 

company of adults, and recently acted as a specialist consultant on an EU funded 

research project investigating sensory processing abnormalities in children with autism. 

SENSORY ABNORMALITIES 

J. G's mother provided a wealth of anecdotal evidence for his sensory abnormalities 

across perceptual domains. For example, J. G. cannot tolerate strong smells, such as 

those of washing powder and glue. Indeed, he actively refuses to wear clothes that have 

been washed with perfumed soap powder. He likes the smell of his own body and is 

unhappy when his bedding is changed. His auditory difficulties include a marked 

intolerance to the sound of vacuum cleaners, and he responds to such sounds by 

covering his ears and crouching down. He finds physical contact highly aversive, and 

consequently refuses to attend appointments with the family dentist or hairdresser. 
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Generally, he avoids situations where he experiences sensory overload, and has yet to 

fully participate in the celebrations for a family Christmas. 

Although J. G. 's mother has always been aware of his sensory difficulties, these had 

never been formally investigated. J. G. 's sensory profile was therefore assessed using a 

test developed by Dunn (1999) called the Sensory Profile. This test provides a standard 

method to measure a child's sensory processing, and to profile the effect of sensory 

processing on functional performance in the daily life of the child. The sensory profile 

is a judgement-based questionnaire for caregivers in which each item describes the 

child's response to a range of sensory experiences. The caregiver who has daily 

contact with the child (in this case J. G. 's mother) completes the questionnaire, which 

measures the frequency with which target behaviours occur (e. g. always, frequently, 

occasionally, seldom, or never). The Sensory Profile consists of 125 items grouped into 

three main sections: sensory processing, modulation, and behavioural and emotional 

responses. 

Research on the Sensory Profile took place between 1993 and 1999, and included more 

than 1,200 children aged between three and fourteen. The sample of children without 

disabilities included 1,037 children aged between three and ten years that were not 

receiving special education and were not taking regular medication. Norms for 

disabled children were derived from children with ADHS (n=61, ages, 3-15), 

Autism/Pervasive Development Disorder (N=32, ages, 3-13), Fragile X-syndrome 

(n=24, ages 3-17), as well as children with behavioural and learning disabilities. 

Researchers defined a classification system by determining cut scores for each of the 

sections and factor raw score totals. The classification system, derived from the research 
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sample of children without disabilities, describes the child's sensory processing for each 

section and factor as either (a) typical, (b) probable difference, or (c) definite difference. 

Each section of J. G. 's Sensory Profile was examined individually, and was compared to 

the norms from children without disabilities and children with autism (Sensory Profile 

Manual; Dunn, 1999). 

Sensory Processing Section 

The results from this section provide data on sensory processing abnormalities in the 

different sensory modalities. J. G. 's scores, together with norms for children without 

disabilities and children with autism are shown in table 6.1. Scores that achieve criteria 

for sensory abnormality are marked with a star. 

Table 6.1: Means of children without disability and autism across the sensory 

Measures 

Group Auditory Visual Vestibular Touch Multi Oral 
Sensory 
(max=35) 

max=40 (max=45) (max=55) (max=90) (max-60) 

Children 34 36 50 80 30 52 

Without 
Disabili 
Autism 24* 30 43* 60* 21* 38* 

J. G. 12_` 15* 27* 57* 121, 32* 

*=Atypical performance 
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Table 6.1 shows that J. G. 's scores are consistently lower (showing more variation from 

typical performance) than the normative data across modalities. This is further 

illustrated in figure 6.2 below. 

Figure 6.2: J. G's performance in comparison to controls across different types of 

senso Processing. 

J. G. shows the greatest variation from the norms in his response to auditory, visual and 

vestibular processing. His scores for touch, multisensory and oral sensory processing 

are much closer to those of norms derived from children with autism. 

Modulation Section 

This section reflects the child's regulation of neural messages through facilitation or 

inhibition of various types of responses. Modulation is broken down into five areas of 

sensory modulation: sensory processing related to endurance/tone (measuring the 

child's ability to sustain performance); modulation related to body position and 

movement (measuring the child's ability to move effectively); modulation of movement 
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affecting activity level (measuring the child's demonstration of activeness); modulation 

of sensory input affecting emotional responses (measuring the child's ability to use 

body senses to generate emotional responses); and modulation of visual input affecting 

emotional responses and activity level (measuring the child's ability to use visual cues 

to establish contact with others). 

J. G's scores on these measures were again compared to those of the two groups and are 

shown in table 6.2. 

Table 6.2: Mean scores of children without disabilities and autism across 

modulation types 

Group Endurance/ Body Movement Sensory Visual Input 

Tone position and Affecting Input Affecting 

Movement Activity Affecting Emotional 

Level Emotional Responses 

Response and Activity 

Level 

(max=45) (max=50) (max=35) (max=20) (max=20) 

Children 42 44 26 18 17 

Without 

Disability 

Autism 34* 35* 22 12* 13 

J. G. 2* 2'3* 16* 13* 10* 

*=atypical performance 
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This pattern of results is shown in figure 6.3, where it can be seen that J. G. 's scores 

across measures fall below those of the other two groups. J. G. shows the most variation 

from the two groups on modulation related to body position and movement. 

Figure 6.3: J. G's performance in comparison to controls across different types of 

modulation 
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Behavioural and Emotional Responses 

This section reflects the impact of sensory processing on behaviour. The measures are 

broken down into emotional/social responses (items indicating the child's psychosocial 

coping strategies), behavioural outcomes of sensory processing (indicating the child's 

ability to meet performance demands), and items indicating the threshold for response 

(indicating the child's level of modulation). J. G. 's scores on these measures are shown 

in table 6.3. 
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Table 6.3: Mean scores of children without disabilities and with autism for 

behavioural and emotional responses 

Group Emotional/Social Behaviour Items indicating 

Responses Outcomes Thresholds for 

of Sensory Response 

Processing 

(max=85) (max=30) (max=15) 

Children without 70 25 13 

disabilities 

Autism 51* 17* 10 

J. G. 51* 15* 13 

*=atypical performance 

J. G. 's scores for emotional/social responses and behavioural outcomes of sensory 

processing met the criteria for atypical performance, although they were consistent with 

those of other children with autism. On the items indicating thresholds for response, 

J. G. showed no abnormalities and his score did not differ from norms derived from the 

typical sample. This is illustrated in figure 6.4. 
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Figure 6.4: J. G's scores in comparison to controls for behaviour and emotional 

responses 
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The Nine Different Factors on the Sensory Profile 

Items on the Sensory Profile unite to form nine meaningful groups or factors. These are 

Sensory Seeking, Emotionally Reactive, Low Endurance/Tone, Oral Sensory 

Sensitivity, Inattention/Distractibility, Poor Registration, Sensory Sensitivity, Sedentary 

and Fine Motor Perceptual. The factors identify items that characterise children by their 

responsiveness to sensory input (for example, overly responsive or under-responsive). 

J. G. 's scores, together with norms, are shown in table 6.4 
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Table 6.4: Mean scores of children without disabilities and the children with 

autism across the nine factors. 

Factors J Autism Children Without 

Disability 

Sensory 38* 55 72 

Seeking (max=85) 

Emotionally 44* 44* 65 

Reactive (max=80) 

Low 32* 34* 42 

Endurance/Tone 

(max--45) 

Oral Sensory 21* 30 38 

Sensitivity 

(max--45) 

Inattention/Distract 10* 20* 28 

ibility (max=35) 

Poor Registration 26* 26* 36 

(max=40) 

Sensory Sensitivity 9" 15 15 

(max--20) 

Sedentary (max=20) 11 13 13 

Fine 9 7* 12 

Motor/Perceptual 

(max=15) 

* Atypical Performance 
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As can be seen from the above table, J. G. 's scores fall below those of the other two 

groups on nearly all the factors indicating atypical performance across the sensory 

profile. J. G. shows the widest variation from the children with autism on the sensory 

seeking, oral sensory sensitivity, inattention/distractibility and sensory sensitivity 

factors. This profile is shown in figure 6.5. 

Figure 6.5: J. G's performance compared to norms across the nine factors of the 

sensory profile 
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INVESTIGATION OF THE IMPLICATIONS OF SENSORY PROCESSING 

ABNORMALITIES IN THE VISUAL MODALITY IN J. G. 

In 2005, J. G. completed the series of studies, described in chapters two and three, that 

tested single word reading (experiment one), comprehension of written text (experiment 

three), and detection of visual discrepancy (experiment four) with and without a colour 

overlay. The methods for these experiments are described in chapters two and three, but 

for ease of comparison, J. G. 's performance scores are presented together with those of 

the children who participated in these previously described studies in the next section. 

Table 6.5 shows the scores for the rate of reading test. 

Table 6.5: Data for J. G. and controls on the rate of reading task 

Group Number of Words Number of Words % Faster 

Read per minute Read per minute 

with an overlay without an 

overlay 

J. G. 70 52 34.60°xö 

Autism (N=19) 84.63 (26.84) 74.74 (27.34) 16.32% (18.42) 

Controls (N=19) 64.19 (26.35) 69.69 (30.59) -5.84 (13.35) 

J. G. 's single word reading was slower than that of the two comparison groups without 

an overlay. However, his performance was greatly facilitated by the overlay, and his 

percentage increase in reading speed was one standard deviation above the mean for the 

autism group. The members of the control group did not increase their reading speed 
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with an overlay on this experiment. J. G. 's performance scores on the comprehension 

task (SCLOP; Baddeley et al. 97; experiment three) are shown, together with data from 

the children who participated in experiment three, in table 6.6. 

Table 6.6: Data for J. G. and controls on the comprehension task. 

Group Number Number Time taken Time taken Percentage 

correct Correct with an without an Faster 

with an without overlay overlay 

overlay (Max=40) (seconds) (seconds) 

(max=40) 

J. G 40 40 358.37 450.90 25.8% 

Autism 38.2 (2.4) 38.3 (2.5) 181.90 201.97 6.16% 

(N=17) (83.99) (10.45) (16.45) 

Controls 38.8 (2.2) 38 (4.2) 239.92 238.96 -2.74% 

(N=17) (68.35) (74.05) (18.66) 

J. G. 's percentage increase in speed on the comprehension test when using an overlay 

was one standard deviation above the mean for the autism group. The control group 

did not increase their reading speed with an overlay on this experiment. Interestingly, 

given J. G. 's poor performance on the comprehension subtest of the WISC, he showed 

excellent comprehension skills on this task and made no errors, although he was much 

slower at completing the task than the other participants. The SCLOP requires the 

subject to read sentences and make a judgement about whether they are true or false, 

whereas the comprehension subtest from the WISC involves oral questions of social and 

practical understanding. 
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J. G. 's performance scores for the non-verbal discrimination task (experiment four) are 

shown, together with data from the children who participated in experiment four, in 

table 6.7. 

Table 6.7: Data for J. G. and controls on the visual cognition task. 

Group Number Number Time taken Time taken Percentage 

Correct Correct with an without an faster with 

with an without an overlay overlay an overlay 

overlay overlay 

(max=30) (max=30) (Seconds) (Seconds) 

J 30 30 116.63 110.33 -5.70% 

HFA 28.92 28.62 101.99 124.62 12.85% 

(N=13) (1.55) (1.45) (48.72) (57.44) (26.83) 

TD (N=13) 26.62 26.23 157.45 132.22 -26.09% 

(3.80) (3.70) (83.53) (88.20) (38.63) 

As can be seen from table 6.7, J. G. performed at ceiling on this task with and without 

overlays, and was therefore unable to show any improvement in accuracy with an 

overlay. However, this finding is unsurprising given J. G. 's level of performance on the 

picture completion subtest from the WISC. On both the picture completion and this 

visual cognition tasks, subjects are required to compare similarities and differences 

across stimuli. Clearly J. G. 's sensory processing abnormalities do not impact on his 

capacity to carry out detailed analyses of black and white non-linguistic visual stimuli. 
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Indeed, given that J. G. was slower on the task when using an overlay, it may be that 

colour overlays are distracting in this context. 

COLOUR CHOICE AND VISUAL STRESS 

In studies using colour overlays, participants are required to record details of visual 

stress symptoms. J. G. 's visual stress symptoms, together with details about his overlay 

choices are shown in table 6.8. 

Table 6.8: J. G's overlay choice and visual stress symptoms across overlay tasks. 

Presented 

stimuli 

Overlay type Overlay 

colour 

Reported visual stress 

symptoms 

Single words Double Purple/Purple Letters moved and blurred 

Page too bright and painful to see 

Written Text Single Purple Page too bright and painful to see 

Non-verbal Double Purple/Blue Page too bright and painful to see 

task 

The results from these studies showed that J. G. showed the greatest benefit from a self- 

selected colour overlay on the single word reading task. It is of interest that whilst he 

reported that the page was too bright and painful to look at for all of the presented 
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stimuli, only the text with single words appeared blurred and moved around. The 

words in this particular passage of text were smaller and closer together than those used 
in the comprehension study. This may have contributed to J. G. 's perception of their 

visual distortion. 

After completing these three experiments, J. G. was supplied with purple and blue 

overlays for use in school. When tested seven months later, his raw score on the Suffolk 

Reading test (Hagley, 1987) increased from 19 to 33, and his raw score on the NFER7 

maths test (NFER-Nelson, 2002) increased from 23 to 26. His teacher's report suggests 

that he has been better able to achieve his academic goals when using his overlays. 

EXPERIMENTAL STUDIES 

An important question that has not been systematically investigated is whether colour 

obsessions noted in autism impact on colour processing. The studies reported in this 

thesis have shown that, whilst many children with autism benefit from the use of a 

colour overlay, many aspects of colour cognition do not differentiate children with and 

without autism. Indeed, the only significant difference between intellectually able 

children with autism and those with typical development related to their perception of 

category boundaries, and it was argued that this is more likely to reflect linguistic rather 

than perceptual factors. It may then be the case that colour overlays are beneficial for 

children with autism whose sensory processing abnormalities are relatively minor. Both 

parent and teacher reports, together with the findings from the Sensory Profile, suggest 

that for J. G. these difficulties are particularly debilitating. An important research 

question concerned the extent to which his performance on colour processing tasks 
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would differ from that of other able autistic children who did not show colour 

obsessions. In an attempt to address this question, J. G. completed the tests described in 

chapters four and five (experiments five to eleven). In the following sections his data is 

compared with that of thirteen HFA (mean age 10 years 9 months) and thirteen TD 

(mean age 11 years 2 months) participants who had completed the experiments. The 

methods for these experiments are described in chapters four (experiments five, six, 

seven and eight) and chapter five (experiments nine, ten and eleven). 

An initial assessment, using the City University Colour Test ((3rd edition; Fletcher 

1998) and Ishihara Colour vision test (Ishihara, 1970) (see chapter two) was carried out. 

This showed that J. G., like the participants with HFA and TD who participated in the 

group studies, showed no abnormalities. 

Table 6.9: Scores of J. G and controls on the City/Ishihara colour tests 

City University Test 

(max score=16) 

Ishihara 

(max score=38) 

J. G. 16 37 

HFA (N=13) 15.92 (sd 0.28) 36.33 (sd 3.05) 

TD (N=13) 15.91 (sd 0.29) 35.54 (sd 3.01) 

Colour comprehension and naming: J. G. achieved the maximum score of eleven for 

both colour name production and colour name comprehension utilising red, blue, green, 

yellow, orange, pink, purple, black, white, brown, and grey colour chips. 
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COLOUR DISCRIMINATION 

This task (described in chapter four, experiment six) involved selecting the odd one out 

from three colour patches within the red, yellow, green and blue categories. The 

perceptual distance effect was tested in three experimental conditions (small, medium 

and large). As large interval distances (2.5 & 10) within the yellow and red colour 

categories are not within category exemplars, separate analyses were carried out on 

these. Table 6.10 shows the means and standard deviations for identification across 

experimental conditions for blue and green. 

Table 6.10: J. G. 's and controls' scores for the total number of colours correctly 

identified in the three experimental conditions (small, medium and large 

perceptual distances) in the blue and green categories. 

Group Small blue/green Med blue/green Large blue/green 

(Mag=4) (Max=4) (Max=4) 

J. G. 3 3 3 

Controls (HFA 2.31 (1.12) 3.04 (0.59) 3.77 (0.51) 

and TD) (N=26) 

In experiment six (chapter four) no significant difference in levels of performance 

between participants with HFA and TD had emerged, although there had been a 

significant effect of condition, with increasingly accurate identification as perceptual 

distance between target and distractor patches increased. As can be seen from table 

6.10, J. G. 's scores were the same in all three conditions, and his score for the large 
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condition was one standard deviation below the control group mean. This is illustrated 

in figure 6.6. 

Figure 6.6: J. G. 's performance in comparison to controls across the three intervals 

(small, medium and large) for the blue and green categories. 

Table 6.11 shows the means and standard deviations for identification across 

experimental conditions for the yellow and red categories. 
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Table 6.11: J. G. 's and the controls' means and SD's for the total number of 

colours identified in the three experimental conditions (small, medium and large 

perceptual distances) in the yellow and red categories. 

Group Small yellow/red Med yellow/red Large yell/red 
(Max=4) 

(Max=4) (Mag=4) 

J. G. 4 4 4 

Controls (HFA 2.31 (1.29) 2.31 (1.29) 3.65 (0.56) 

and TD) (N=26) 

In experiment six (chapter four) a different pattern of performance with red/yellow 

patches in comparison to blue/green patches had been seen. Participants had shown no 

increase in correct identifications in the medium compared to the small condition, but 

had been very good at identifying the category boundary chips in the large condition. 

As table 6.11 shows, J. G. performed at ceiling in all three conditions, and his scores for 

the medium and large conditions were one standard deviation above the control group 

means. This is further illustrated in figure 6.7 overleaf 
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Figure 6.7: J. G. 's performance in comparison to controls across the three 

intervals (small, medium and large) for the red and yellow categories. 
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Inspection of J. G. 's individual data for the discrimination study showed that he made 

overall correct same/different discriminations for 87% of the colour pairs. Only three 

interval pairs were incorrectly classified, and these were all drawn from the blue range, 

with one at each size interval (2-5,2-5-7-5,2-5-10). Thus, whilst J. G. correctly 

identified all red, yellow, and green stimuli, he only identified 50% of the blue stimuli 

correctly. This meant that his identification performance was significantly better than 

that of controls for all colours except blue where his performance was significantly 

worse. It therefore appears that his colour sensitivities and obsessions have implications 

for his perceptual processing of colours. More specifically, he shows superior 

discrimination of colours that he dislikes, and actively avoids and inferior 

discrimination of his preferred colour blue. This will be discussed further. 
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The results from experiment seven (reported in chapter four) showed that intellectually 

unimpaired children with autism have sharper category boundaries than TD controls. 

Although this finding was consistent with predictions drawn from the RG theory 

(Plaisted, 2001) described in the introduction, the account was rejected as it assumes 

enhanced perceptual processing in autism, and this was not in evidence in the sample 

that were tested. Instead it was proposed that sharp category boundaries reflect literal 

language use in autism. J. G. has a very strong tendency towards literal language use, 

but also shows some evidence of enhanced perceptual processing, at least for colours 

that he finds aversive. The following section ascertains whether J. G. possesses different 

category boundaries to other children with autism, as well as those with typical 

development. 

COLOUR CATEGORISATION 

Colour chips were presented in triads in either the purple/blue or blue/green range, and 

participants were required to choose the chip that was most different. These triads 

comprised three chips within category (condition one), two chips within category and 

one boundary chip (condition two), or two chips within category and one from a 

different category (condition three). As was the case for experiment seven, the analysis 

was carried out on predicted chip choice scores. The predicted chip for condition one 

was the one nearest to the next category boundary, for condition two the boundary chip 

was predicted, and for condition three the different category chip was predicted. Table 

6.12 and figure 6.8 shows the percentage scores for J. G. and controls across the three 

conditions in the blue/purple range. 
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Table 6.12: Percentage scores for predicted chip choice in blue/purple range for 

J. G. and controls 

Group All Within ( 

Predicted 

%) 

Other 

2Within+Boundary 

Predicted Other 

2Within +Category 

Predicted Other 

J. G 50 50 75 25 100 0 

HFA 76.92 23.08 78.84 21.16 76.92 23.08 

TD 80.76 19.24 61.53 38.47 61.54 38.46 

Figure 6.8: J. G. 's and controls' performance across the blue/purple range 

As can be seen, J. G. performed at ceiling on condition three where the predicted chip 

was in a different category. His performance was similar to that of the other 

participants with HFA on condition two which included a category boundary chip, 

suggesting that his category boundaries were sharper in this range. However, on 
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condition one, where all chips were within category, he was as likely to select the 

unpredicted as the predicted chip. Table 6.13 and figure 6.9 show scores for blue/green 

stimuli. 

Table 6.13: Percentage scores for predicted chip choice in blue/green range for 

J. G. and controls 

Group All Within 

Predicted 

(%) 

Other 

2Within+Boundary 

Predicted Other 

2Within +Category 

Predicted Other 

J. G. 50 50 50 50 100 100 

BFA 65.38 34.62 80.76 19.24 61.53 38.47 

TD 50 50 59.61 40.39 57.69 42.31 

Figure 6.9: J. G. 's and controls' performance across the blue/green range. 
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It can be seen that J. G. shows a different pattern to both the HFA group and controls 

across the blue/green range. As was the case for the blue/purple range, he performed at 

ceiling on the condition where the predicted chips were in another category. 

Furthermore, he clearly did not perceive the category boundaries in this colour range in 

the same way as TD and HFA controls, and was as likely to choose the non-predicted 

chips as the predicted chips in the within and category boundary conditions. This 

finding was further investigated. 

J. G. was presented with a series of chips from the blue/green range and was asked 

whether these were (a) blue, (b) green, or (c) neither. Similarly, he was shown chips 

from the blue/purple range and asked whether these were (a) blue, (b) purple or (c) 

neither. The findings from experiment seven, described in chapter four, had shown that 

for the majority of the twenty children with autism tested, 7.5 BG and IOBG and 5PB 

and 7.5PB represented category boundaries. Although J. G. 's perceived category 

boundary across blue and purple chips did not differ from that of the group, his 

boundary between green and blue was different. Details of chips named as green and 

blue by J. G. and the HFA group are shown in figure 6.10 on the following page. 
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Figure 6.10: Naming of Munsell blue/green colour chips by J. G. and children with 

HFA 

7.5G IOG 2.5BG 5BG 7.5BG IOBG 2.5B 

All Labelled Green 

5B I 7.5B I 10B 12.5PB I 5PB 

Labelling of Blue/Green Munsell Chips by Children with HFA 

All labelled Green 

Labelling of Blue/Green Munsell Chips by J. G. 

This finding is consistent with those of the categorisation experiment in showing that 

J. G. possessed a wider green and a narrower blue category than the HFA group. 

MEMORY TASKS 

In these studies, J. G was tested on his ability to remember colours and colour names 

paired with animals. In memory condition one (chapter five, experiment nine), the 

retrieval of previously exposed animal/colour pairs could be facilitated by the use of 

verbal labels. However, in memory condition two (chapter five, experiment ten), test 

trials included colour patches that were all within category (red, blue, yellow and 

green), and a verbal encoding strategy (of colour name) would not facilitate 

performance. Memory condition three (chapter five, experiment eleven) paired animals 

and colour words and more explicitly tested verbal encoding. J. G. 's scores in 
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comparison to controls are shown in table 6.14 and figure 6.11. As HFA and TD 

controls had not shown significant group differences in experiments nine, ten or eleven, 

their data are shown pooled. 

Table 6.14: J. G's and controls' performance across memory tasks 

Group Memory 1 Memory 2 Memory 3 

J. G. 16 1 16 

Controls 

(N=26) 

9.35 (5.00) 4.35 (2.56) 10.50 (4.95) 

Figure 6.11: J. G's performance compared to controls on the memory tasks 

As can be seen, J. G. showed a similar pattern of performance to controls, although his 

scores were more extreme. Indeed he scored at ceiling on memory conditions one and 
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three, and only correctly identified one (red) stimulus in experiment two. Taken 

together, the findings suggest that he encoded very little of the perceptual information in 

the familiarisation trials and relied heavily on a verbal coding (colour word) strategy. 

DISCUSSION 

The findings from this case study represent the first systematic investigation of colour 

obsessions in autism. J. G. 's obsession with the colours blue, purple and black impacts 

on many aspects of his daily life, and the findings from the current studies suggest that 

it also influences his processing of colour information more generally. As previously 

suggested, colour obsessions are characteristic of some individuals with autism (White 

& White, 1987; Williams, 1999), although the behavioural and cognitive correlates of 

these are not well understood. 

J. G. showed strong therapeutic benefits from using colour overlays, particularly when 

reading single words in a small font, and he reported a reduction in his symptoms of 

visual stress. However, it was also clear from the studies that he is able to perform at 

high levels on some visual processing tasks without overlays. For example, the WISC 

includes some tests with visual processing components, and J. G. attained either typical 

or good performance on these. On the experimental study that required participants to 

notice small changes in stimuli, J. G. performed very well indeed/ 

Inspection of J. G. 's WISC data showed low performance on the vocabulary subtest. 

However, he was able to name and comprehend all of the colours that he saw. The data 

from the categorisation and memory experiments suggests that his awareness of colour 

terms powerfully influences his perceptual processing of colours. For example, the 
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categorisation study included a condition in which one of the three presented chips was 

taken from a different category. In this case, J. G. performed at ceiling both for the 

blue/green and blue/purple colours. Whilst HFA and TD children were significantly 

more likely to select different than within category chips, their discrimination scores 

were lower than those of J. G.. Furthermore, on the three memory tasks, J. G. was found 

to perform exceptionally well, in relation to controls, when a verbal labelling strategy 

conveyed an advantage. It may then be the case that one developmental outcome of 

debilitating sensory sensitivities is that there is a greater reliance on verbal labels than 

on perceptual information in memory. However, the data from the studies directly 

investigating colour perception provide strong evidence for enhanced perceptual 

processing of some, but not all, colours in J. G. 

In the two phases of the experiment relating to perceptual colour distance, J. G. showed 

a very different pattern of performance to controls. Whilst HFA and TD controls had 

shown a steady increase in discrimination of odd-one-out blue/green chips as the 

perceptual distance between these and the two comparison chips increased, J. G. did not 

show this effect. Instead he performed at ceiling on all interval size conditions when 

chips were green, but showed poor discrimination performance when chips were blue. 

He also appeared to possess different category boundaries across blue/green in 

comparison to controls. When three within-category chips were shown in condition one 

of the categorisation experiment, the HFA participants were significantly more likely to 

select the chip that was nearest to the category boundary. However, J. G., like controls, 

was as likely to choose chips that were not near the category boundary. This effect was 

seen more strongly in condition two where the triad included a category boundary chip. 

The HFA group selected this chip 80% of the time and TD selected it 60% of the time. 

213 



However, again J. G. was equally likely to select boundary or non-boundary chips in this 

condition. It was only when the chip to be detected crossed into another category, and 

had a different colour name, that J. G. selected it. On this condition he performed at 

ceiling. 

When discriminations were carried out on red/yellow chips, J. G. 's performed again at 

ceiling and he correctly identified all stimuli drawn from the red/yellow ranges. 

Controls had shown relatively poor discrimination performance with small and medium 

intervals, although performance of large intervals, where target chips were at category 

boundaries, was good. Yellow and red are colours that J. G. is particularly unable to 

tolerate, and it is interesting that he shows enhanced discrimination of these stimuli. He 

reports reduced visual stress symptoms when looking at blue and purple and it was 

interesting that his discrimination of stimuli normally labelled blue was relatively poor. 

One explanation for this is that blue causes the least discomfort and so J. G. does not 

process the stimuli as intently as the colours that cause him the most discomfort. 

However, his naming of green, blue and purple Munsell chips revealed tighter category 

boundaries for the blue range and whereby wider category boundaries for green than 

either the TD or HFA groups. In the categorisation task (chapter four, experiment eight) 

when chips were drawn from the blue/purple range, J. G. 's discrimination of boundary 

chips was good and his performance, like that of his HFA counterparts, was better than 

that of controls. However, on the within-category condition, he did not select the chip 

nearest to the boundary whereas controls (HFA and TD) selected them on 80% of 

presentations. The extent that the theories of autism and of colour processing can 

accommodate these findings will now be discussed. 
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The EPF (Mottron & Burack, 2001) and RG (Plaisted, 2001) theories of autism both 

propose that autism is characterised by particularly good discrimination of perceptual 

stimuli. Whilst both theories allow that many of the abnormalities seen in autism are 

domain-general and higher-level, they nevertheless propose that the core abnormality is 

perceptual in nature. Thus, EPF reflects early over-activity in low-level perceptual 

modules that interfere with the development of higher-level domain general processes. 

According to the RG theory, enhanced performance on perceptual tests occurs because 

people with autism are particularly sensitive to unique features within stimuli, and less 

sensitive to features shared between stimuli. Whilst these explanations for enhanced 

performance on perceptual tasks are not dissimilar to Frith (1989) and Happe's (1999) 

concept of enhanced local processing, WCC theory differs from the EPF and RG 

theories in proposing a core deficit in global or holistic processing. Whilst global or 

holistic processing is currently not well defined in the WCC theory, it seems plausible 

to suggest, particularly in the light of studies showing how language impacts on the 

perceptual processing of colour (Kay & Kempton, 1984; Roberson, Davies, & Davidoff, 

2000), that language might well be considered an important mechanisms by which 

coherence is accomplished. Taking the case of J. G., it is clear that whilst his language, 

relative to his non-verbal intelligence, is poor, he uses verbal labels to name colours and 

remember colours. Although he does show some evidence of enhanced perception in 

on-line processing, he nevertheless adopts a verbal coding strategy in colour memory 

experiments, and in fact this was the case for all of the HFA participants. He also 

showed a powerful effect of verbal labelling on condition three of the categorisation 

study, where different category chips would possess a different colour name. 
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The findings from the group studies in chapter five highlighted the use of a verbal label 

strategy in colour memory in autism, and this has implications for theories of colour 

perception which will be further discussed. 

In summary the findings from the study of J. G. in this chapter, suggest that colour 

obsessions in autism maybe one result of atypical sensory processing that gives rise to 

unpleasant symptoms of visual stress. Other outcomes of colour obsessions include 

enhanced discrimination for normally avoided colours and a relative insensitivity to 

favoured colours. Category boundaries appear to be influenced by colour obsessions 

and individuals with these difficulties may rely heavily on colour names on memory. 

The findings from the study of J. G. will be further considered in the general discussion. 
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CHAPTER SEVEN 

GENERAL DISCUSSION 

The studies presented in this thesis represent the first systematic investigation of colour 

processing in individuals with autism. Given that idiosyncratic responses to colour have 

long been reported in the literature (White & White, 1987; Williams, 1999), and colour 

therapies are increasingly considered to have beneficial effects for these individuals 

(Howlin, 1996; Irlen, 1991; Williams, 1999) such studies are much needed. Several 

influential theoretical accounts of autism have proposed that an important characteristic 

of these individuals is that they possess enhanced perception but that higher-level or 

global processing is significantly compromised. This issue of whether information is 

driven by top-down or bottom-up processes in autism is particularly interesting when 

considered in the context of colour processing. This is because researchers working on 

categorical colour perception are currently evaluating the relative contributions of 

perception and language to such processes. 

The primary aim of this thesis was to establish whether children with autism would 

show abnormal colour processing, and how any such results could be interpreted within 

the context of current theorising about the disorder. The findings from the studies will 

now be discussed. 

In order for a diagnosis of autism spectrum disorder to be made, individuals must 

present deficits in the three domains of socialisation, communication and imagination 

before they attain the age of three years (DSM-IV, 1994). As previously mentioned, 
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abnormal responses to sensory stimuli were omitted from DSM-III (1980) because of 

confusion over the interpretation of such symptoms (Ornitz, 1989), and also because of 

the poverty of systematic empirical research in this domain (Fillipek et al., 1999). 

However, since DSM IV was published in 1994 there has been an increasing awareness 

that sensory processing difficulties may be an important symptom in the clinical picture, 

for at least some individuals with autism (see Dawson & Watling, 2000). The children 

with autism who participated in the studies presented in this thesis were not screened for 

sensory abnormalities, and parental information was only obtained for J. G. Theoretical 

accounts of atypical perceptual processing in autism (WCC, EPF & RG) assume 

homogeneity in samples, and for the purposes of the current research such data was not 

of primary interest. The studies that examined the use of colour overlays in autism 

clearly showed their use resulted in increases in processing speed without 

compromising accuracy in many, though not all, children with this diagnosis. This 

suggests that these children are more susceptible to the types of visual disturbance 

associated with Meares-Irlen syndrome (Irlen, 1991; Wilkins 2003; Williams, 1999) 

than would be expected, given current diagnostic criteria. The clinical and theoretical 

implications of the studies presented in this thesis will now be discussed. 

Clinically, the results of the experiments using the colour overlays are very important. 

Chapters two and three provide clear evidence for the beneficial effects of these 

overlays for individuals with autism spectrum disorders. A larger proportion of children 

from the autism group than from the control group improved task performance when 

using colour overlays, and for these children such improvements tended to be larger 

than those of the few controls who also showed such improvements. 
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The results of the experiments also provided preliminary support for the reliability and 

consistency of these overlays. When children were retested eight months after their first 

overlay test, a similar proportion of children from the two groups benefited to the same 

extent as on the earlier testing session. There was also a very strong effect of overlay 

colour choice across the tasks. The observation that children were able to select 

overlays that were effective over repeated testing sessions offers some support for the 

cortical hyperexcitability hypothesis. According to this hypothesis, the remediation 

effects of overlays occur because they change the locus of activation from 

hyperexcitable areas to areas that are not hyperexcitable. As the location of these areas 

of hyperactivation differs between individuals, the process of selecting appropriate 

overlays can only be carried out by the individual concerned. The individual's cue for 

optimal overlay choice is his/her perception of reduced hyperactivation in response to 

the specific overlay/s selected. 

The findings from the studies presented in chapters two and three highlighted some of 

the potential academic benefits that may accrue as a result of using these overlays. 

Whilst it is clear that autism-specific difficulties with academic tasks like reading 

cannot be solely attributed to visual perceptual difficulties, they may well be a 

contributory factor. Indeed increased reading speed, seen in children with autism in the 

current studies, suggests that this is the case. It is thus proposed that when considering 

the complex and diverse difficulties in information processing in autism, cortical 

hyperexcitability is included as a potentially contributory factor. 

Further research into the cortical hyperexcitability theory may also be important in 

enabling researchers to link abnormalities in specific brain areas such as the cortical 
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regions, with deficits in different aspects of cognition. Of all the groups tested with 

colour overlays to date, those with autism have been found to show the largest benefits. 

In the introduction to the thesis, a range of central nervous disorders including dyslexia, 

epilepsy, migraine, head injury and multiple sclerosis were proposed as candidate 

groups for colour overlay therapy. Indeed this proposition has gained some support 

from empirical studies (e. g. Wilkins, 2003). However, many of these studies have 

concentrated on ameliorating visual perceptual distortions, and no study has reported 

positive effects for such large proportions of individuals within groups, or such large 

percentage gains on academically related tasks as was seen in the studies described this 

thesis (Jackowski et al., 1996; Wilkins, 1995; Wilkins & Nimmo-Smith, 1987; Wilkins 

et al., 1999). Importantly, the findings from the overlay studies show that beneficial 

effects extend to autistic children with significant intellectual difficulties. In contrast, 

MLD children included in control groups did not show greater benefit than typically 

developing controls. 

The study reported in chapter six provides an instructive example of cases where colour 

processing abnormalities are particularly profound. This chapter presented a case study 

of J. G., an eleven year old boy with Asperger syndrome, whose obsession with the 

colours blue and purple and a very limited tolerance to other colours was shown to have 

impacted on different aspects of his daily life in profound ways. Of particular 

relevance, when considering the results from the group overlay studies, was the finding 

that J. G. 's self-selected colour overlays corresponded to his colour obsession (blue and 

purple), and he showed large increases in performance speed on the various tasks he 

completed when using these specific overlays. Unlike the other HFA participants, J. G. 

was able to describe symptoms of visual stress when viewing the test stimuli without 
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colour overlays. If, as the cortical hyperexcitability hypothesis suggests, self selected 

colour overlays reduce hyperexcitability by redistributing excitation in such a way that 

discomfort is avoided, it is plausible to suggest that J. G. 's colour obsession has 

increased the extent that he can function well in his everyday world. Thus, he is able to 

enjoy being in his room at home because it is painted purple and blue and does not have 

bright lighting. He can participate in family trips because the family car is blue and 

purple. It may be the case that other children with autism, with equally marked colour 

processing abnormalities as J. G., but possessing poorer communication skills or poorer 

support networks, would not have made such gains developmentally. The improvements 

in performance on the overlay experiments, seen in the children with autism, would not 

have been predicted from their verbal reports of stress symptoms. Given that many of 

the participants were relatively verbal, this is clearly an important problem. Sensory 

processing difficulties, prevalent in autism, tend to ameliorate with age (Dunn, 1999), 

although their early effects may have far reaching consequences developmentally. The 

development of appropriate screening methods and the establishment of early screening 

timetables should therefore be a primary aim for researchers working with children with 

autism. 

It is important to note, when considering the case of J. G, that his sensory processing 

difficulties were not limited to the visual modality. Indeed he also reacted negatively to 

particular classes of auditory input. However, localised hyperexcitability may also 

occur in the auditory cortex and these difficulties can be accommodation by the cortical 

hyperexcitability hypothesis. 
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Just et al., (2004) propose the underconnectivity theory which suggests that there may 

be preservation and/or enhancement of the functions of individual cortical centres, and 

poorer integration of information at the higher levels required among the cortical 

centres. The notion of enhanced cortical centres is similar to that of enhanced 

perceptual functions, proposed by Mottron and Burack (2001). However, whilst these 

accounts offer a plausible explanation for why good performance on perceptual tasks 

has been seen in some experimental studies, they fail to account for potentially negative 

consequences arising from cortical hyperexcitability. This will be further discussed. 

One very surprising finding that emerged from the studies was that many of the children 

with autism who showed large benefits from colour overlays did not appear to differ 

from autistic children or indeed from controls who showed no such benefits, on 

investigations into colour perception, categorisation and memory. Thus, whilst the 

findings from chapters two and three did suggest atypical visual processing in the 

majority of children with autism, these did not appear to impact on other aspects of 

colour perception to any significant degree. This was not the case for J. G., and his 

performance on the tasks into perception, categorisation and memory clearly linked 

back to his unusual pattern of colour processing. It may then be the case such children 

represent a distinct sub-group that might well be the focus for future studies. 

In conclusion, the findings from chapters two and three showed that a large proportion 

of children with autism benefited from the use of colour overlays, and it was suggested 

that these findings could have significant implications for many aspects of their 

development, particularly within the academic environment. The colour of the overlay 

chosen appeared to be very specific, and consistency in colour choice was shown across 
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tasks. The case study of J. G. highlighted the importance of overlay choice in reducing 

visual stress, and it was also suggested that when colour processing abnormalities are 

severe they may have a far-reaching impact on development in autism. Finally, early 

and appropriate screening for symptoms of visual stress was advocated. 

A different approach to the investigation of colour processing was taken in chapters four 

and five. In chapter four, children were tested across different areas of colour cognition 

using various paradigms. In experiment five, the children were shown colour chips and 

asked to name each colour, and in the comprehension part of the experiment they were 

required to point to the relevant colour chip when its name was given. Colour 

discrimination ability was then tested in experiment six. Here, children were shown 

three patches of blue, green, red or yellow, and were asked to identify the one that was 

different to the other two. The distance between the different patch and the two other 

patches was manipulated in three conditions, in which hue distance was varied 

systematically. The perceptual distances for all three experimental conditions remained 

within category for the blue and green patches, although the in-the-large perceptual 

distance condition straddled or crossed category boundaries for yellow and red stimuli. 

Colour categorisation was explored in experiments seven and eight. Experiment seven 

attempted to determine category boundaries across the blue/green and blue/purple 

ranges. Here children were required to name manually presented Munsell chips. In 

experiment eight, the children were required to judge which of three chips was the most 

different. In this experiment triads of chips were (1) all within category; (2) included 

two within category and one boundary chip; or, (3) included two within category chips 

and one from another category. The findings of the first of this group of studies, 

comprehension and naming, showed that for the vast majority of children with autism, 
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colour naming and comprehension were relatively unimpaired. Although a small sub- 

group of children with autism were unable to name colours, it seemed likely that this 

reflected more general speech production problems. Certainly the children in this sub- 

group, like the rest of the children in the autism group showed high levels of colour 

name comprehension. The findings from experiment six that manipulated perceptual 

distance in order to test perceptual discrimination ability showed that diagnosis was 

only an important factor when it co-occurred with significant intellectual impairment. 

Here, the performance of the HFA children was indistinguishable from that of the TD 

controls. Qualitatively their performance was also like that of the MLD controls, 

though their scores tended to be higher. Perception of differences between stimuli that 

were blue and green increased in line with increasing perceptual distance. However, this 

was not the case for red and green stimuli, and here discrimination performance was 

less influenced by perceptual distance than by the category boundaries. 

The findings from the two categorisation studies showed an interesting pattern of 

performance that appeared to be related to both diagnosis and intellectual level. The 

first of these studies involved naming the colours of stimuli, and earlier findings had 

shown that this was difficult for some intellectually impaired children with autism. 

Consequently, only a small proportion of these participants were included in the study. 

The findings from this study appeared to show category boundary differences across the 

blue/green boundary between children with autism and their controls. However, the 

effect was not statistically significant. The second categorisation study did not involve 

naming and a larger sample of LFA children participated. The findings from this study 

supported the suggestion that that colour categories may be different in autism when 

compared to controls. However, the children with autism did not perform in a uniform 
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way and it appeared from the data that cognitively unimpaired children with autism 

possessed rigid category boundaries, in comparison to TD controls, and cognitively 

impaired children with autism categorised colours more loosely than their age and 

intelligence matched controls. 

An important aspect of these studies was to test the theories of autism and colour 

processing outlined in the introduction. The enhanced perceptual functioning (EPF) 

theory (Mottron & Burack, 2001) proposes that there is an over-development of low 

level perceptual features which override higher level processes in autism. Consequently 

the detection, discrimination and the categorisation of perceptual stimuli are assumed to 

be enhanced in autism. The findings from chapter four failed to provide support for the 

EPF theory as the performance of the HFA children was strikingly like that of TD 

controls, and the LFA participants showed poor discrimination performance. Plaisted's 

(2001) reduced generalisation (RG) theory predicts that the enhanced salience of unique 

stimulus features results in narrow category boundaries in autism. Whilst the findings 

from the experiments in chapter four provide limited support to this theory, in that 

narrower category boundaries were found in the HFA group relative to the TD controls, 

the LFA children showed looser category boundaries than their MLD matched controls. 

Furthermore, Plaisted's theory assumes that narrow category boundaries are a result of 

enhanced perception, and this did not appear to be characteristic of the participants in 

the current studies. 

As outlined in the introduction, some researchers working in the area of colour 

processing have proposed that categorical perception is influenced by language (Kay & 

Kempton, 1984; Roberson, Davies & Davidoff, 2000). Such theorising has important 
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implications when considering the case of the individual with autism, for whom 

language is both delayed and atypical. Recently, Franklin, Clifford, Williamson et al., 

(2005) have outlined a perceptual reorganisation theory, that takes into consideration 

the interaction between language and perceptual factors. This theory proposes that 

whilst perceptual categorisation is hardwired, category boundaries are reorganised at 

later stages in development (Franklin et al., 2005). Cultural factors, most importantly 

language, are then allowed to play a role in the formation of category boundaries. 

The findings of spared colour naming and comprehension together with unexceptional 

perceptual processing in autism might lead to the conclusion that children with and 

without autism will show fewer dissimilarities within this domain than is usually the 

case. However, consideration of the matching procedures used in the studies presented 

in the thesis is important in this respect. The results from the studies suggest that the 

non-verbal matching criteria had worked well in that the children in the HFA and TD 

groups had shown similar levels and patterns of performance on the discrimination and 

naming task. Even though the mean BPVS (language) score for the HFA group was 

similar to the mean for the MLD group, their performance on the experimental tasks 

was very similar to that of TD participants and was also generally superior to that of the 

MLD group. The children in the MLD groups tended to show the same pattern of 

performance as those in the cognitively unimpaired groups (TD, HFA) although their 

overall scores were lower. It therefore appeared that whilst the HFA children were 

language impaired relative to the TD children, their non-verbal intelligence enabled 

them to overcome any difficulties associated with their delayed and atypical language 

skills. MLD children, like those with typical development, tend not to show large 

discrepancies between verbal and non-verbal intelligence, and in this respect differ from 
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the children with LFA for whom verbal scores are frequently lower than non-verbal 

scores. It was noted that whilst the HFA and TD comparisons showed very similar task 

performance, a very different pattern was found when LFA and MLD groups were 

compared. The experiments presented in chapter five, attempted to determine whether 

children with autism would rely on language or perceptual information in memory, and 

clearly showed that the level of language skill was an important factor in determining 

memory strategy in autism. 

In chapter five, experiments nine, ten and eleven tested the children on their ability to 

remember animals paired with either colours or colour names. The HFA, TD, and MLD 

children showed good memory performance in the experiments where a reliance on 

verbal labels would be expected to facilitate good performance (experiments nine and 

eleven). However the LFA children showed the opposite pattern, and performed 

significantly better on experiment ten where a tendency to encode perceptual 

information would be expected to convey an advantage. The analysis of the data showed 

that scores on experiment ten were found to be significantly and negatively correlated 

with verbal and non-verbal IQ. When an analysis was carried out on the data from the 

three studies together, it became clear that the participants with LFA relied on 

perceptual information in memory. However, the HFA children like their TD controls 

and the children with MILD relied on verbal labels in memory. This reliance on 

perceptual information in the LFA group is interesting when considered in the light of 

theories proposing enhanced perception in autism. The LFA participants did not appear 

to show enhanced perception in the earlier studies, and indeed they were poorer than 

HFA children in distinguishing differences between blue and green stimuli. However, 

they were nevertheless able to retain this information to a higher level than their more 
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intelligent counterparts who appeared to rely more heavily on verbal labels. It was 

interesting that J. G. showed an absolute reliance on verbal labels in the group of 

memory studies, even though he did provide some evidence for enhanced perceptual 

processing in the earlier studies. Clearly theoretical accounts of atypical perception in 

autism require some reformulation. Most importantly, the assumption of homogeneity 

in autism samples should be questioned. 

Indeed J. G. 's performance is better interpreted within the context of his colour 

obsessions. He obtained perfect colour naming and comprehension scores and also 

performed at ceiling on the perceptual distance task when the colour triads where not 

blue. When stimuli were blue his performance was at chance. His enhanced perception 

of colours that he finds aversive suggests that he is hypersensitive to their qualities. 

That he is even more likely to rely on a colour name encoding strategy than other 

children with HFA may reflect his reluctance to encode aversive perceptual information, 

when other strategy options are available. The findings from the two categorisation 

studies also suggest that he possesses a narrower category boundary for blue than HFA 

and TD controls. Clearly, further research into colour processing in individuals with 

strong colour preferences should be carried out. 

Taken together, the findings from chapters four, five and six show that language as well 

as perceptual information is important in colour processing in autism. However, the 

findings also suggest that LFA children, who have poor language, rely on perceptual 

information in memory more and language information less than their more able 

counterparts. The Weak Central Coherence theory has attempted to account for atypical 

information processing in autism and assumes that higher order mechanisms such as 
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language will exert less influence on lower-level perceptual and cognitive processes. 

This then has relevance for theories of colour that place emphasis on the organisational 

functions of language. The perceptual reorganisation theory (Franklin et al., 2005) 

accounts for both linguistic and perceptual factors in colour categorisation, and provides 

an account within which differences between HFA and LFA children can be considered. 

If language is important in the shaping of categories, it is unsurprising that children with 

autism, for whom language is delayed and atypical, show atypical categorical 

perception. It thus appears that an account based on the perceptual reorganisation and 

weak central coherence theories best explains the findings from the studies presented in 

chapters, four, five and six. 

In her original formulation of the WCC theory, (Frith, 1989) suggested that people with 

autism cannot see the wood for the trees; in other words gist processing is compromised 

in autism. It seems likely that a week tendency to perceptually group stimuli will impact 

negatively on social, communicative functions. For example, perceptual categories for 

emotions on faces and in voices enable individuals to make rapid inferences about the 

people they interact with. Applying such reasoning to the colour domain it could be 

argued that the use of colour names enables groupings that are also highly functional. 

For example, an inability to know which objects are blue would be much more 

disadvantageous than an inability to distinguish and remember which particular shade of 

blue an object was. Because people with autism have compromised Gestalt processing, 

the importance of global category (i. e. blue) is weaker in relation to "local" elements 

such as particular shades of blue. If such a tendency is characteristic from infancy, it 

may well impact on the formation of categories. Categorical perception leads to 

perceptual distortion such that pairs of stimuli that cross category boundaries are 
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perceived as more dissimilar that widely spaced pairs that are within categories. A 

tendency to WCC would be predicted to reduce the extent of perceptual distortion and 

result in equivalent salience for stimuli, independent of their relationship to category 

boundaries. However, in the current studies the performance of the HFA children 

suggested that for them category boundaries were tighter, and J. G. showed a similar but 

more marked effect. It also appeared from the findings that the children with autism 

and significant language impairment were relatively insensitive to category boundaries, 

and were also better able to remember individual colours (as demonstrated in 

experiment ten) than their higher functioning counterparts. Whilst they had been found 

to have acquired colour names it may still be the case that their unusual pattern of 

performance relates to their poor and late developing language skills. 

Whilst many high functioning individuals with autism develop language skills, research 

has shown that these skills are very uneven (Lord et al., 1997; Minshew, Goldstein & 

Siegel, 1995; Rapin, 1996; Tager-Flusberg, 2001; 2003). One unusual aspect of the 

language of individuals with autism is its concrete, inflexible nature. For example, after 

J. G., the child described in chapter six was told that the family computer had a virus, he 

responded by taping the cracks around the doors and windows. Whilst the isolation of a 

virus would be extremely important in some contexts it was not the case in this context. 

Such confusions form an everyday occurrence in the lives of able people with autism. 

Perhaps then, J. G. 's concept of blue is infinitely less flexible than would normally be 

the case. Certainly, he did not seem very sensitive to differences within this colour 

category, and it appeared that his category boundary for this colour was tighter than that 

of controls. The other able autistic participants, who would also have shown a tendency 
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towards literal interpretations, also provided some evidence for narrower category 

boundaries. 

Thus, the qualitative difference in category boundary processing may well reflect a 

more general tendency towards rigidity in verbal labelling in able people with autism. 

For individuals whose language development is more severe, top-down effects of 

language on perception may be weak. Certainly the findings from the various studies 

show that their pattern of performance on tests of colour processing clearly distinguish 

them from other, more able individuals with autism, and from age and non-verbal 

intelligence matched controls. 

In conclusion, theoretical accounts that place emphasis on top down processes are better 

able to account for the studies presented in this thesis than accounts that stress bottom 

up processes. Further, theoretical accounts of autism should allow for the importance of 

language as well as the types of perceptual disturbance that results from brain 

abnormalities. Whilst the WCC theory provides an important framework for 

understanding autism, it is not able to account for individual differences well. The case 

of J. G., who showed marked differences in performance across the colour 

discrimination and categorisation tasks compared to both autism and control groups, 

illustrates the importance of individual case studies. Neurological theories like the one 

proposed by Just et al., (2004) are likely to be an important influence on future research, 

although current practices of averaging data across small numbers of participants are 

particularly problematic in explaining groups where variation across a wide range of 

variables is likely to be particularly large. 
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The studies that have been presented in the thesis are the first to directly investigate 

colour processing in autism spectrum disorders. The findings from the studies have 

revealed a complex pattern, encompassing both typical and atypical performance across 

different aspects of colour information processing. In interpreting these findings, it was 

concluded that perceptual processes, language and experiential factors are likely to have 

contributed to the observed findings, and weaknesses in current theoretical accounts of 

autism were outlined. Of significant educational importance were studies showing how 

colour overlays enable some children with autism to process visual information more 

efficiently. Future research might extend the current findings in several ways. For 

example, the early identification of children like J. G. who have extreme aversive 

reactions to particular colours, might impact positively on these children's development, 

particularly if early intervention can be achieved. Therefore effective screening methods 

should be developed. The use of colour overlays in neurological studies might enable 

researchers to refine theories of cortical hyperexcitability in autism. Larger scale 

overlay studies might also collect language data, diagnostic data and sensory profile 

data in order to determine whether there are sub-groups within the spectrum that 

respond particularly well to therapeutic interventions using colour. The question of 

colour perception and categorisation and the role of language in these processes clearly 

merits further study. Finally, group studies of children like J. G., who show extreme 

idiosyncratic responses to colour may enable researchers to further refine theories of 

autism, as well as theories of perception and categorisation. 
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APPENDICES - MISCELLANEOUS WORKING PAPERS 

(i) The Colour of Overlays Chosen by Children with Autism and their 297 

Controls in Chapter Two (Experiment One) 

(ii) Rate of Reading Task (Chapters Two and Three - Experiments 298 

One and Two) 

(iii) Visual Stress Symptoms (Chapters Two and Three) 299 

(iv) Comprehension Task - SCOLP (Baddeley et al., 1992) 300 

(Chapter Three - Experiment Three) 

(v) Change Detection Task (Chapter Three - Experiment Four) 305 

(vi) Categorisation - Triad Stimuli (Chapter Four - Experiment Eight) 309 

(vii) Categorisation Practice Stimuli (Chapter Four - Experiment Eight) 310 
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APPENDIX (1) - Sheet 1 of 1 

The Colour of the Overlays Chosen by the Children with Autism and their 

Controls in Chapter Two (Chapter two-experiment one) 

Colour overlay Autism group Control Group 

No overlay 0 3 

Rose 0 1 

Purple 2 0 

Mint 4 3 

Lime 1 0 

Blue 0 3 

Aqua 1 2 

Yellow+Yellow 0 2 

Yellow+Orange 1 0 

Orange+Orange 1 1 

Pink+Purple 1 1 

Pink+Rose 1 0 

Lime+Mint 2 1 

Mint+Mint 2 0 

Mint+Aqua 2 2 

Blue+Aqua 1 0 
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APPENDIX (II) - SHEET 1 of 1 

RATE OF READING TASK (CHAPTERS TWO AND THREE 

EXPERIMENTS ONE AND TWO) 

come see the play look up is cat not my and dog for you to 
the cat up dog and is play come you see for not to look my 
you for the and not see my play come is look dog cat to up 
dog to you and play cat up is my not come for the look see 
play come see cat not look dog is my up the for to and you 
to not cat for look is my and up come play you see the dog 
my play see to for you is the look up cat not dog come and 
look to for my come play the dog see you not cat up and is 
up come look for the not dog cat you to see is and my play 
is you dog for not cat my look come and up to play see the 
see the look dog and not is you come up to my for cat play 
not up play my is dog you come look for see and to the cat 
look up come and is my cat not dog you see for to play the 
my you is look the dog play see not come and to cat for up 
for the to and you cat is look up my not dog play see come 
you look see and play to the is cat not come for my up dog 
come not to play look the and dog see is cat up you for my = 
and is for dog come see the cat up look you play my not to 
dog you cat to and play for not come up the see look my is 
the come to up cat my see dog you not look is play and for 

hake two photocopics ot the page and place side h) side. 

298 



APPENDIX (III) - SHEET 1 of 1 

VISUAL STRESS SYMPTOMS (CHAPTERS TWO AND THREE) 

Intuitive Overlays Record Sheet 

Name 
.............................................. Date ................................. 

Date of Birth :..................................... Male/female 
Class ................................................ Examiner's initials............... 

Symptom Questionnaire 
Ask question when individual is looking at text on Test Page. 
Response that is underlined scores 1; others score 0. 
Enter score in box_ 

"Do the letters stay still or do they move? " 

"Are the letters clear or are they blurred? " 

"Are the words too close together or far enough apart? " 

White Single Double 
page overlay overlay 

is the page too bright, not bright enough, or just about right? " 

"Does the page hurt your eyes to look at, or is it OK? " 

There is no hard and fast rule relating the above symptoms to benefit from overlays, although, in general, the greater 
the number of symptoms reported, the greater their reduction with the optimal colour, the more likely it is that the 
overlay(s) will be used, and the greater the increase in reading speed that results. See Wilkins, A. J. Lewis, E., Smith. F. 
Rowland. E.. Tweedie. W. (2001). Coloured overlays and thew benefit for reading. Journal of Research in Reading. 24.41-64. 

Colour of single overlay ........................ Colour of double overlay (it needed)....................... 

You can use this diagram to keep track of the overlays and combinations of overlays you have tested. The 
colours formed by the single overlays are shown in the inner ring. The colours given in the outer ring are 
formed by placing one overlay on top of another. Grey overlays are only rarely of benefit. 

yellow yell 
lime green yellow orange 

yellow 
lime green orange 
lime green orange 

lime green 
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rose 
mint green lime green orange orange 

mint green rose 
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APPENDIX (IV) - SHEET 1 of 5 

COMPREHENSION TASK - SCOLP (Baddeley et al., 1992) 

(CHAPTER THREE - EXPERIMENT FOUR) 

Example 

Are they true sentences? 

Examiner 

Fish live under the water 
People have two noses 

Practice. 

%hild 

Bicycles have wheels 
We see with our ears 
Flowers wear clothes 

Milk comes from cows 
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APPENDIX (IV) - SHEET 2 OF 5 

Name 
................. Date 

..................... 
DOB......... 

.... With/without overlay Test number 12345 

A side 1 

We drink when we are thirsty 
Potatoes can be eaten 

We use the moon to stir things 
Oranges are fruit 

The sun is hot 

Tears come out of our eyes when we cry 
Oranges fall from the clouds 
Fathers have wings for flying 

Cats wear shoes 
Wood comes from the clouds 

Houses have six legs 
We eat shoes 

We stand on our elbows 
Dogs grow out of the ground 

Cats are living creatures 
The moon shines underground 

Fruits grow on trees 
Birds can live in trees 

Trees grow out of the ground 
Smoke comes from fire 

Duration ................................................. 
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A side 2 

The moon has two feet 
Dogs bark 

Trucks have wheels 
Houses wear clothes 

Dogs have wheels 
The sky gets hot at night 

Fathers are men 
Wood comes from trees 

Clothes have roots in the ground 
We use heat to cook food 

1 

Trucks grow on trees 
Fathers have four legs 

Your teeth are in your mouth 
Doctors are people 

The sky has two ears and four legs 

Leaves grow on trees 
Puddles are wet; 
Tables can walk 

r 

Rabbits can sing 
We see with our eyes 

Duration . ....................................... 
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APPENDIX (IV) - SHEET 4 OF 5 

Name ................. Date..................... DOB.............. 
With/without overlay Test number 12345 

B side 1 

Dogs can run 
Birds have wings 

Tables have teeth 
Your feet are at the end of your legs 

Noses shine at night 
Spoons have sharp teeth 

Stones are hard 
We see things with our noses 

Birds can sing 
Stones grow on trees 

Your toes are attached to your hands 

When people get old their hair can go grey 
Birds wear shoes 

Fish can sing 
Soldiers have teeth 

When stones get old they get grey hair 

Lions use sharp knives to cut things 
Fish can swim 

Chairs are for sitting on 
Dogs have two ears on their heads 

)uratlon ..... ...................................... 
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13 side 

Shoes are worn on feet 
Lions have fins for swimming 

Apples have wings 
Buses have eyes 

Lions have long tails 
Noses can smell smoke 

We use sharp knives to cut things 
Yours eyes are behind your knee 

Knives have legs 
Birds have whiskers 
Dogs have four legs 

Onions have legs 
Your nose is in the middle of your face 

Chairs have ears 
Owls have wings 

Cats have small noses and whiskers 
Cows eat grass 

Rocks can run 1 
Cars are made from cheese 

Birds eat worms 

I)uration ............................... .....,....... 
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CHANGE DETECTION TASK (CHAPTER THREE EXPERIMENT FOUR) 
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CATEGORISATION - TRIAD STIMULI 

Triad 1- l OG, 2.5BG, 5BG 

Triad 2- 7.5B, lOB, 2.5PB 

Triad 3- 2.5BG, 5BG, 7.5BG 

Triad-4- 

Triad-5- 

Triad-6- 

Triad-7- 

Triad-8- 

Triad-9- 

Triad-10- 

Triad-11- 

Triad-12- 

IOB, 2.5PB, 5PB 

7.5BG, IOBG, 2.5B 

5PB, 7.5PB, 1OPB 

IOBG, 2.5B, 5B 

7.5PB, IOPB, 2.5P 

7.5G, 2.5BG, 7.5BG 

5B, lOB, 5PB 

lOG, 5BG, 1OBG 

7.5B, 2.5PB, 7.5PB 

Traid-13- 5BG, 1OBG, 5B 

Triad-14- 2.5PB, 7.5PB, 2.5P 

Triad-15- 7.5BG, 2.5B, 7.5B 

Triad-16- 5PB, 1 OPB, 5P 
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CATEGORISATION PRACTICE STIMULI (CHAPTER FOUR 
EXPERIMENT EIGHT) 
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Familiarised with Familiarised with Familiarised with Familiarised with 
5R 5B 5Y 5G 

Tested with Tested with Tested with Tested with 
5R+5Y+5G+5B 5B+5R+5G+5Y 5Y+5R+5G+5B 5G+5B+5R+5Y 

Tested with Tested with Tested with Tested with 
5R+1R+ 9R 5B+1B+ 9B 5Y+1Y+ 9Y 1G+9G+ 5G 

Experiment eleven 
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Familiarised with Familiarised with Familiarised with Familiarised with 
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Testing 

Yellow 
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