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ABSTRACT
Myo Mapper is a free and open source cross-platform
application to map data from the gestural device Myo
armband into Open Sound Control (OSC) messages. It
provides an easy to use tool for musicians to explore the
Myo’s potential for creating new gesture-based musical
interfaces. Together with details of the software, this paper
reports on projects realised with the Myo Mapper as
well as a qualitative evaluation. We propose guidelines for
using Myo data in interactive artworks based on insight
gained from the works described and the evaluation. We
show that Myo Mapper empowers artists and non-skilled
developers to easily take advantage of raw data from the
Myo data and work with high-level signal features for
the realisation of interactive artistic and musical works.
Myo Mapper: 1) Solves an IMU drift problem to allow
multimodal interaction; 2) Facilitates an clear workflow
for novice users; 3) Includes feature extraction of useful
EMG features; and 4) Connects to popular machine learning
software for bespoke gesture recognition.

Author Keywords
Myo armband, mapping, feature extraction, EMG, hand
gestures recognition, interactive machine learning.

CCS Concepts
•Human-centered computing → Gestural input;
•Applied computing → Sound and music computing;
Performing arts;

1. INTRODUCTION
Over the last three decades, muscle sensing technology has
been used as an interface for musical performance. Recently,
it has been used for manipulating vocal sounds [16],
for developing new concepts of multimodal expressive
interactions [7], for mapping micro-interactions into audio
parameters [15], for allowing dancers performing music [14],
and exploring the physiological influence of external
auditory stimuli [18].

Muscle activity can be analysed via electromyography.
It enables us to monitor the electromyogram signal (EMG)
originating from our somatic nervous system and transported
to our muscles through efferent nerves [17] (Fig. 1).
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Figure 1: Electromyo biosignal flow.

With the commercialisation of EMG sensing technology
and low-cost abrication, EMG-based interaction has become
available to artists interested in creative works using
physiological interaction. The Thalmic Labs Myo1 is a
multi-modal gestural input device that includes eight
EMG sensors and an Inertial Measurement Unit (IMU)
(gyroscope, accelerometer and a magnetometer). Factory
applications provide us with a pose-recognition algorithm
able to recognise five hand poses2, and different applications
to gesturally interact with different software such as Power
Point, VLC, Spotify, Adobe Reader. The Myo has the
potential of making biosignals accessible to artists; however,
no easy-to-use application enables non-skilled developers
to access raw physiological data.

We therefore designed and developed Myo Mapper (MM)3

an application that enables users to extract and stream
raw data to third-party audiovisual interactive software
through a simple graphical user interface (GUI). Moreover,
MM gives access to an easy Myo calibration process, data
scaling, data feature extraction, and communication via
OSC with machine learning (ML) software such as Gesture
Recognition Toolkit (GRT) [13], ml.lib [6] or Wekinator [11].

This paper first explores related work. We give a detailed
description of the software and its architecture. We then
describe a number of creative projects in which MM
has been utilised. We also report an informal qualitative
evaluation. From these experiences, we derive a set of design
guidelines for the use of EMG in musical applications.

2. RELATED WORK
The commercial and research communities have released
tools to facilitate the use of the Myo in musical applications
and the data mapping of Myo data into Open Sound Control
(OSC) and MIDI messages. One example is Leviathan4,

1https://www.myo.com/
2https://support.getmyo.com/hc/en-us/articles/
202647853
3www.balandinodidonato.com/myomapper/
4http://precisionmusic.technology/
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an application to control chords and effects parameters
in Digital Audio Workstations (DAWs) using the Myo’s
factory poses. Myo-Ableton5, is a“connector”(an extension)
to the Myo daemon to maps factory poses data to control
the popular Ableton Live music software. MyOSC6 and
myo-osc7, are solutions to map Myo raw data to OSC
messages. In addition to making raw data available,
Myo-maxpd8 and Francoise’s Myo for Max9 are externals
for Max giving access to connection settings and haptic
feedback. Although these tools interface the Myo with
music recording and programming environments, they do
not represent turn-key solutions for musicians not experts
in interactive technology [4]. Specifically, they require
additional software for extracting high-level data features
for data mapping and the use of machine learning for
recognising non-factory hand poses and gestures.

The Myo armband provides EMG and IMU data, enabling
musicians to work with multimodal interaction [23] and
use data relative to the arm’s orientation coupled with
isometric and isotonic muscle activity to generate, control
and transform sound. Making use of the orientation,
however, can be difficult as the yaw value drifts. We will
show in the next section how we solve the problem of
drift to allow Myo Mapper to be a robust interface for
multimodal musical interaction.

3. ARCHITECTURE AND
IMPLEMENTATION

Myo Mapper is a cross-platform application developed in
C++ using the JUCE framework10 and Myo SDK11.

The software architecture is comprised of five main
blocks: Myo communications, feature extractors, the OSC
ports, shared spaces for storing application settings and
a separate space for storing sensor data and extracted
features. The GUI is made of three different windows:
‘Settings’, ‘Calibrating and Scaling’ and ‘Feature Selection’.

The Myo SDK allows the application to communicate
with the Myo hardware through bindings to the libmyo C
library. The entry point to the SDK is the Myo Connect
application which functions as a ‘hub’, managing the
connection between the computer and one or more Myos
(Fig. 2a). The SDK provides access to accelerometer,
gyroscope, orientation, and EMG data from the device and
control over its vibrational motors (Fig. 2b).

To facilitate the Myo data mapping to audiovisual
authoring environments and interactive machine learning
software, Myo Mapper includes different feature extractors
(Fig. 2c), that can be selected in the Feature Selection
window (Fig. 2e). The GUI also allows users to set the OSC
communication between MM and third-party applications
and includes tools to visualise orientation data. These
configuration settings (OSC ports, features, calibration and
scaling parameters) are stored in a shared space to facilitate
the communication between the GUI and the back-end
(Fig. 2d). MM includes an OSC receiving port, to which
the user can send OSC messages to control calibration and
scaling features (Fig. 2g).

Gestural data is sent out through two independent OSC
ports, main and ml (Fig. 2f). The main port is used to send
Myo data to the main musical application able to receive

5https://github.com/GonzaloNV/Myo-Ableton
6https://github.com/benkuper/MyOSC
7https://github.com/samyk/myo-osc
8https://github.com/bcaramiaux/Myo-maxpd
9https://github.com/JulesFrancoise/myo-for-max

10https://juce.com/
11https://developer.thalmic.com/

OSC messages. While the ml port is dedicated to sending
OSC on a side chain to machine learning software. This
second port was implemented to keep the end-user from
having to use additional software to organise data features
into a single feature vector to stream to the interactive
machine learning subsystem.

Myo Mapper

GUI(e)

Myo Connect

Myo armband

(a)

Back-end

Myo SDK

MyoData
(b)

Feature 
Extractors(c) Settings (d)

OSC out 
‘Main’

OSC out 
‘ML’ (f)

OSC in

(g)

Figure 2: Myo Mapper’s architecture.

3.1 Feature extractors
Following the evaluation of EMG features presented in
[2], we implemented the mean absolute value (MAV)
feature. Works related to hand gesture-recognition through
electromyographic analysis [21, 3], reported the importance
of the zero-crossing rate (ZCR) feature to observe spectral
qualities of the EMG signal. Thus, we implemented it
using equations from [2]. We implemented additional data
features: minimum (MIN), maximum (MAX), absolute
value (ABS), moving average (MAVG), first and second
order difference (FOD, SOD) for use in interactive machine
learning based on Fiebrink’s work with Wekinator and
Wekinator Input Helper12.

The MIN and MAX features were implemented for
analysing the range of values through which a gesture or
pose is represented. The ABS is useful when observing the
EMG data that might be the negative component of a
mirror image signal’s positive component. FOD and SOD
are useful for analysing the input data variation over time;
for instance, the orientation FOD and SOD inform us of
our arm gestures’ velocity and acceleration. The MAVG can
function as a filter to separate EMG data from background
noise.

The use of feature extraction is useful to preprocess sensor
data for pose or gesture classification. For instance, the
moving average of EMG absolute values over a window of
40 data points (Fig. 3, red line) facilitates distinguishing
the arm resting (Fig. 3, pink area) from when performing
a fist pose (Fig. 3, green area) by testing if the input
value is greater than a given threshold (0.05). With this
approach, poses might be misclassified (9 times as seen long
the red MAVG curve in Fig. 3) times as a consequence of
the time needed to calculate the data feature. However,
as EMG data are streamed at a frequency of 200Hz, this

12http://www.wekinator.org/input-helper/
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classification latency is minimised. Fig. 3 also shows that
if we were to use the absolute values of EMG RAW data
(Fig. 3, blue line), our algorithm would have misclassified
the pose 19 times. An even less accurate result would have
been obtained if using EMG raw data. Implementations of
the above algorithm in Pure Data and Max are available in
Section 8.
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Figure 3: Comparison of EMG ABS and EMG ABS
MAVG feature data for hand-pose recognition.

3.2 Orientation data scaling
Orientation data from the Myo is reported in a range
[−2π, 2π]. Myo Mapper scales this data to the range [0, 1]
to ease their linear mapping into audiovisual processing
parameters. However, the yaw value drifts 3.7 deg/s before
reaching a stable value; with similar drift in the roll value
[20]. In a real world situation, the data drift might be
misinterpreted as a movement of the arm by a machine
learning algorithm, which output triggers audio events every
time that a movement occurs. To solve the orientation data
drift issue, we included a set origin functionality which sets
the current orientation data (yaw, pitch or roll) to a value
of 0.5.

During tests, it emerged that the orientation data
variation depends on the way the Myo is worn. (Flipping
the bracelet on the arm changes which EMG channels
correspond to which muscle groups, and inverts the IMU).
Without a software solution, users would have to take off
the Myo and turn it around. To avoid the user having to
do this, we implemented a flip function, y = 1− x, on yaw,
pitch and roll. We also observed that in some cases, arm
movements produce a too small a variation in the data to
control audio parameters. To address this, we implemented
range functions to limit the values in input (in min, in max)
and rescale the values in output (out min, out max).

3.3 OSC message streaming
The main port is to send each selected feature in a
unique OSC message. While the ml port is to send OSC
messages to outboard machine learning software. When
a feature, to be sent through the ml port, is selected
in the Feature Selection window (Section 3.6), MM adds
the selected feature’s data to an OSC message with tag
/myoX, where X is the number of the selected Myo (i.e.
/myo1 for the Myo number one). The data embedded in
the messages are organised in the same order as they are
selected. For instance, if streaming the raw orientation data
and the EMG raw data, the OSC message will contain 11
floating point values (i.e. /myo1 0.1 0.2 0.3 0.4 0.5 0.6

0.7 0.9 0.11 0.12), where the first three are the RAW
orientation data and the last eight the raw EMG data.

An OSC receiver port can be set through the Settings
window (see Section 3.4). Through this last port, MM can
receive messages, allowing the user to remote configure
the set-origin, flip, in min, in max, out min and out max

settings. All OSC messages’ tag and type are specified in the
MM Wiki page13 and through a tooltip display.

3.4 Settings window
The Settings window includes controls to set the OSC
communication (port number and IP address). In case more
than one Myo is connected to the Myo Connect, here it is
possible to select which of the Myos’ data series have to be
streamed.

3.5 Calibrating and Scaling window
The Calibration and Scaling window (Fig. 4) embeds
controls to recall the set origin, flip, in min, out min and out
max functions. When dragging the cursor over each button,
a tooltip message containing instructions for having control
of the button via OSC will appear.

Figure 4: Myo Mapper’s Calibration and scaling
window.

3.6 Feature Selection window
The Feature Selection window (Fig. 5) enables the user to
select one or more features to stream through the main
and ml OSC ports, respectively, through the To Main
and To ML toggles. The organisation of the features in a
tree structure represents the data processing chain of each
feature. For instance, the moving average of the raw EMG
crossing rate can be streamed by selecting the fourth feature
from the top in the EMG panel (Fig. 5). To facilitate the
comprehension of the data processing chain, a tooltip shows
the data chain processing. In the above example, the tooltip
would contain the text: EMG raw -> zero crossing rate.
Similarly, information relative to the OSC message (tag,
number of values and type, sender’s port number and IP
address) of each feature are shown in a tooltip upon gliding
the cursor over a feature (Fig. 5).

4. CASE STUDIES
Myo Mapper has been used for realising interactive music
and dance performances, Virtual Reality (VR), robotics
applications and for gesture recognition. It has been
downloaded more than 2,300 times, and received the JUCE
Award 2017. We are aware of 16 interactive projects built
using Myo Mapper, and report on some of them here.

13https://github.com/balandinodidonato/MyoMapper
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Figure 5: Myo Mapper’s Feature window.

4.1 Musical performances
In Fantasie pour violoncelle by Gonzalo Villegas Curulla
(2017)14, X/Centris Delirium Machine: Les bruits de l’esprit
by Lagacè and Dagher (2017)15 and Haptic Vertex by
Michailidis (2017), the instrumental and vocal sound
produced by the performers were transformed by mapping
Myo data.

An early version of MyoSpat, a gesturally controlled
interactive system for manipulating audiovisual effects using
the Myo armband and Myo Mapper [9], was used in Grace
Savage’s Music Gesture Beatbox (2016)16 at Music Tech
Fest 2016 in Berlin. MyoSpat was later used also by Eleanor
Turner for performing The wood and the water (2017)17

at Shanghai Symphony Hall for the Electronic Music
Week 2017 and Star Cluser (2016) by Kirsty Devaney18.
In these last two performances, MM facilitated the
classification of arm poses and gestures that are different
from those recognised by the device’s factory default.
Specifically, three different arm poses (frontwards, outwards,
downwards) and two different gestures (plucking and
throwing) were classified using the ml.lib Support Vector
Machine (SVM) classifier [9]. The orientation scaling
functions were very important in the classification success
for those works. Specifically, when performing in different
spaces, MM allowed the adjustment of the gestural data
mapping into audiovisual processing parameters to obtain
the optimal audiovisual result in relation to the venue’s
sound and video projection system set-up without making
changes to the composition.

In [8] MM has been used for classifying gestural data to
trigger different panning settings. Here the authors used
MM and ml.lib for training a SVM classifier system. The ML
algorithm was fed using moving average of the of the EMG
data’s absolute value over 50 samples. During the mapping
phase, the feature extractor buffer size was reduced to 10
samples to minimise the classification latency.

4.2 Dance performance
MM has been adopted for realising interactive dance
performances. In Sonia Sabri’s Nu Body (2017), orientation
data from the Myo’s IMU were mapped to (i) parameters

14https://www.youtube.com/watch?v=EioMZD9LbF0
15https://youtu.be/R90_UCJ0VcQ
16http://bit.ly/musicGestureBeatbox
17http://bit.ly/TheWoodAndTheWater
18https://youtu.be/9ToP33Ki2SE

for controlling the virtual sound source’s position of a
spatialiser, (ii) lighting colours changing cues and (iii) video
processing parameters. Gyroscope ABS data were used
to relate the sound intensity of audio events and the
light’s brightness with arm movement acceleration. A
Neural-Network Multilayer Perceptron (MLP) classifier was
implemented using Wekinator for the mapping process and
Pd as the audiovisual engine19. Michailidis and Di Donato
(2016) presented an interactive system that aimed to
translate a performer’s gestures into haptic feedback sensed
by a different performer using vibrational motors. This
system aimed to empower dancers to communicate and
inform each other of their artistic intentions during
performance20 [19]. A later work based on the same system
enabled a dancer to communicate to pianists the music to
be played21. In both applications, yaw and pitch’s FOD
and EMG ABS data of the Myo worn by a performer
were mapped to parameters for controlling the intensity
of vibrational motors of other Myos worn by the second
performer. At TaikaBox’s DigiDance workshop22, dancers
controlled sound and video projections. MM was used to
stream yaw, pitch and EMG ABS data to Isadora23 and
Live24.

4.3 Virtual Reality
MM has been used to conduct experiments in VR and Mixed
Reality. Specifically, it has been used for the realisation of
System 2 [5], which spatialised sound files represented as
objects through an avatar using gestural control25. The
avatar position on the screen was driven by direct mapping
of yaw, pitch, and roll values. Myo factory poses (fist,
finger spread, wave in and wave out) triggered different
System 2 functionalities. In [8], direct mapping of yaw,
pitch and EMG ABS data were used to construct an
audio-based mixed reality system where the user can
crumple a non-existent piece of paper through a natural
hand movement and then ‘throw’ it into an imaginary ‘cave’
represented by a bin.

4.4 Robotics
In two different applications, MM has been deployed
for controlling digitally controlled motors. At K-Array’s
laboratories, MM has been used to map Myo data into
parameters for controlling orientation and the audio signal
amplitude of the KW8 (aka Owl) moving head loudspeaker26.
A different approach is taken in TaikaBox’s work which
looks at ways to create choreographies for humans and
robots, MM has been used for controlling a robotic arm
with a light mounted on its extremity27. In both works,
robotic components were driven by mapping and converting
yaw, pitch and roll into signals for controlling the KW8 and
a robotic light.

5. EVALUATION
We collected user feedback from Myo Mapper’s web
presence on: our own developer website, GitHub, and
SourceForge. We also carried out a workshop at Goldsmiths,

19http://bit.ly/MyoMapperDance
20https://youtu.be/n1x0fVHA2iw
21https://youtu.be/oxxiF0y7hFY
22https://youtu.be/EuQZSNm6Ut4
23https://troikatronix.com/
24https://www.ableton.com/en/live/
25https://vimeo.com/174099457
26https://vimeo.com/131770240
27https://youtu.be/Un2rP4ZyYNM
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University of London as a means to conduct an informal
evaluation of Myo Mapper.

5.1 Online feedback
Feedback collected from online users reported different
issues in installing and using early iterations of the software.
For this reason, the JUCE framework was used to guarantee
the software portability across different operating systems.
Three users requested the possibility to extract data from
multiple Myos. Although this is not supported through the
GUI, it is possible to do so by launching a second MM
instance and selecting a different Myo in the Settings
Window. This method was successfully implemented in
Lagacè’s musical work and Sabri’s dance performance. John
Collingswood, TaikaBox director, commented:

‘This is amazing. I’ve been looking for this
exact thing for a couple of years. I use Isadora to
create interactive environments for dancers and
other performers, and it [MM] instantly started
kicking out useful and stable OSC that I can
monitor in Isadora.’

5.2 Workshop
Six students and two researchers from the Goldsmiths’
Computing, Music, and Psychology departments took part
in a half-day workshop. All participants were aware of the
Myo, and 50% of them had used it prior the workshop.
Problematic aspects of the GUI were highlighted. The
organisation of feature labels in the Features Selection
window was not clear for some participants. Most of the
participants asked different times about the OSC message’s
tag, type and number of values of each feature. It was based
on this feedback that the GUI tooltip was implemented.

The feature extractors were shown to be easy to use
for all participants. In particular, they found the moving
average of EMG absolute value very useful to filter out
background noise. Through this feature, an undergraduate
music student (guitarist) built a Neural-Network Multilayer
Perceptron (MLP) classifier to recognise three different
plucking gestures, using Myo Mapper in conjunction with
Wekinator fed with the moving average of EMG absolute
value and the absolute value of gyroscope data. In 15
minutes the student obtained a model outcome that
achieved 90% accuracy in direct evaluation[12]. A second
participant (Computing PhD student) aimed to recognise
sign language gestures using MM and Wekinator. However,
due to the complexity and number of gestures she sought
to classify, MM did not allow the participant to quickly
built a robust machine learning model. At the end of the
workshop, participants commented on the software as being
very useful and requested the implementation of additional
features such as Root Mean Square (RMS) and Bayesian
filters.

6. INTERACTION DESIGN GUIDELINES
After reviewing the works realised using Myo Mapper and
considering the outcomes of the qualitative evaluation, we
propose the following guidelines to aid musicians and artists
in using EMG and IMU data from the Myo for creative
interactive projects.

We observed that having all data within the same range
[0, 1] facilitates user workflow. Scaled data within the same
range also helps to build more robust machine learning
models. The MAVG feature is useful for filtering background
noise from EMG data. Raw EMG is a noisy, stochastic,
information and artefact rich signal, and effective use of

feature extraction is fundamental in the use of EMG and
machine learning.

In Section 4.1, we observed that by training a model using
EMG data filtered with the MAVG function, the machine
learning algorithm’s output result was more accurate. After
having built such model, the machine learning algorithm
responsiveness could be optimized if MAVG analysis buffer
size in the ‘mapping’ or ‘performance’ phase is lower than
in the ‘training’ phase.

MIN and MAX features were shown to be useful to
acknowledge the data range in which a pose or gesture
occurs, to then adjust the data mapping accordingly. Direct
mapping of orientation data resulted in useful ways to
control position of virtual and robotics objects (Sections
4.3 and 4.4).

We also had interesting findings from [19], where the
electromyography’s lack of possibility to monitor involuntary
movements can be exploited as an element of creativity in
dance performance. In particular, dancers can control an
interactive system differently when they are interacting or
guiding each other’s bodies, for instance, when a dancer
moves the another dancer’s arm. In Section 4.1, orientation
data scaling controls gave the possibility to adapt the
mapping strategy to the audio and lighting system. The
same controls could also be beneficial in adjusting the data
mapping process during live performance.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented Myo Mapper, a free and open
source cross-platform application to process and map EMG
and IMU data from the Myo device into OSC messages
for creative applications that use machine learning. We
gave descriptions of creative projects where it has been
successfully used. We reported on online and workshop
feedback that aided in design improvements of the software.
We distil the insights taken from these projects and feedback
in the form of design guidelines for effectively using the Myo
Mapper to manage EMG and IMU data from the Myo in
conjunction with machine learning software like Wekinator.

Myo Mapper has been used in different applications and
is recognised by the research community. Works cited in
Section 4 could have been realised using other software
such as Max for Myo, Myo-maxpd or MyOSC, but they
would have required the artist to implement their own data
feature extractors, calibration and scaling functions and
communications to interactive machine learning software.
For instance, to implement a zero-crossing rate feature
extraction algorithm that considers the background noise
in the EMG signal using Pure Data or Max, would require
a longer time than using Myo mapper. A comparison of the
implementation of these two solutions with the use of Myo
Mapper in the same environments is available in Section 8.

Future development of Myo Mapper will include GUI
improvements, including native support for multiple Myos,
and a more intuitive organisation of items in the Features
Selection window. Future MM releases will implement
additional feature extractors such as EMG RMS [10],
Bayesian filter [22] and EMG Maximum Voluntary
Contraction (MVC) [1]. Improvements will include MIDI
and MPE (MIDI Polyphonic Expression) output, allowing
the streaming of gestural data to non-OSC audio
applications that accept only MIDI messages for external
control. Future application areas, we have begun to explore,
include music therapy and the use of interactive sonification
in physical therapy and rehabilitation.
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8. EXAMPLES
Examples mentioned in Sections 3.1 and 7 can be found
at: https://github.com/balandinodidonato/MyoMapper/

tree/master/examples.
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