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CARLOS LEÓN, Complutense University of Madrid, Spain
JAMIE FORTH, MATTHEW PURVER and GERAINT A. WIGGINS, Queen Mary University of
London, UK
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1. INTRODUCTION
Computational Creativity [Wiggins 2006a; Colton and Wiggins 2012] is a field of re-
search, seeking to understand how computational processes can lead to creative re-
sults. The field is gaining importance as the need for not only intelligent but also
creative computational support increases in fields such as science, games, arts, mu-
sic and literature. While work on automated creativity has a history of at least one
thousand years (e.g., Guido d’Arezzo’s melody generation work around year 1026), the
field has only recently developed an academic identity and a research community of its
own1.

The computational generation of new concepts is a central challenge among the top-
ics of computational creativity research. In this paper, we briefly outline different ap-
proaches to concept creation, and then review conceptual representations that have
been used in various endeavors in this area. Our motivation stems from computa-
tional creativity, and our aim is to shed light on the emerging research area, as well
as to help researchers in artificial intelligence more generally to gain an overview of
conceptual representations, especially from the point of view of computational concept
creation. For generic treatments of knowledge representation and reasoning, we re-
fer the reader to other reviews [Brachman and Levesque 1985; Sowa 2000; Liao 2003;
Van Harmelen et al. 2008; Jakus et al. 2013].

“Concept” has been used to refer to a bewildering range of things. In Boden’s [1990]
pioneering study on creativity, a concept is an abstract idea in arts, science and every-
day life. A key requirement of any computational model (creative or otherwise) that
manipulates concepts, is for a representation of the concept being manipulated. Any
representation describes some but not all aspects of an idea, and supports a limited
number of processing options [Davis et al. 1993], which are further constrained by the
scientific or technical methods available at the time. A representation is created or
chosen (over competing representations) based on the extent to which it facilitates a
specific task. For an interdisciplinary audience, it is important to understand that the
word “representation” is used in different ways in different fields. In computer science,
it means “a formalism for encoding data or meaning to be used within a computational
system”. This is in contrast to the use in psychology where a representation is a mental
structure that corresponds with a specific thing or class of things; thus, for a psycholo-
gist, a concept and a representation are much the same thing. For us, however, one is
a thing to be encoded using a representation.

This paper reviews computational conceptual representations relevant to compu-
tational concept creation, which therefore may be useful in computational creativity.
First, a brief overview of different approaches to concept creation is presented, pro-
viding a background to this review. The actual review that follows next is structured
in terms of two major distinctions between different conceptual representations. One
distinction is along the axis from connectionist to symbolic levels, with a spatial level

1http://computationalcreativity.net/home/conferences/.
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between them. The other distinction, especially prominent in the computer science
community, is between descriptive and procedural representations.

It is perhaps worth adding explicitly that the aim of this paper is not to discuss
the philosophy of cognitive concept creation (interesting though that be), but to survey
relevant computational approaches in the field of computational creativity.

1.1. Approaches to Computational Concept Creation
In this section, we propose a typology of computational concept creation techniques, as
background and motivation for the review of conceptual representations. Our aim here
is to provide an overview of the multitude of approaches, instead of giving a detailed
review of concept creation techniques.

One of the best known categorizations of different types of creativity is by Boden
[1990]. Boden distinguishes combinatorial re-use of existing ideas, exploratory search
for new ideas, and transformational creativity where the search space is also subject to
change. While Boden does not give a computational account of how concepts or ideas
could be created, her taxonomy provides a starting point for characterizing various
possible approaches to concept creation. We extend it with approaches based on ex-
traction and induction. Our taxonomy of different types of concept creation approaches
is reflected in the different kinds of input they take: concept extraction transforms an
existing representation of a concept to a different representation, concept induction
generalizes from a set of instances of concepts, concept recycling modifies existing con-
cepts to new ones, while concept space exploration takes a search space of concepts as
input.

— Concept Extraction is the task of extracting and transforming a conceptual repre-
sentation from an existing but different representation of the same idea. Typically,
the extracted representation is more concise, explicit and centralized. Concept ex-
traction is frequently applied to textual corpora, such as extracting semantic re-
lations between concepts. For instance, the conceptual information that wine is a
drink could be extracted from the natural language expression “wine and other
drinks”. For an overview of information extraction methods see e.g., the work of
Sarawagi [2008].

— Concept Induction is based on instances of concepts from which a concept or con-
cepts are learned. Drawing from the field of machine learning and data mining, two
major types of inductive concept creation can be identified:
— Concept Learning is a supervised activity, where a description of a concept is

formed inductively from (positive and negative) examples of the concept (e.g.,
Kotsiantis [2007]). In logical terms, (a sample from) the extension of a concept is
given and machine learning is then used to construct its intension. An example
from the field of music is a system that is given songs by the Beatles and other
bands, and the system then learns the typical chord progression patterns, as
concepts, used by the Beatles.

— Concept Discovery is an unsupervised inductive activity where the memberships
of instances in concepts are not known in advance, but methods such as clus-
tering are used to generalize natural concepts from given examples (e.g., Jain
et al. [1999]). Continuing the example above, given songs by a number of bands,
the system can discover different genres of music by clustering the songs.

While inductive methods can be used to uncover existing concepts, more interest-
ing applications arise when these methods are used to discover and formulate new
possible concepts based on data.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.
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— Concept Recycling is the creative reuse of existing concepts (e.g., see Aamodt and
Plaza [1994]). (The original concepts usually stay in existence, too; recycling does
not imply they have to be removed.) We mention two typical methods.
— Concept Mutation: modify some given concept by adding, removing or changing

something in it. For instance, the concept of “mobile phone” has been modified
to “smart phone” by allowing new applications to be used on the phones. Chang-
ing existing concepts is a well-known form of concept creation also with humans;
Osborn [1953] lists a variety of techniques for such purpose. Two common mu-
tational operations are generalization and specialization of existing concepts.

— Concept Combination: combine two or more existing concepts to form a new one,
such as in conceptual blending, where “computer program” and “virus” can form
a conceptual blend of “computer virus”.

Both mutation and (re-)combination of concepts are utilized heavily in evolutionary
methods for concept creation. While recycling may sound an easy way to create
new concepts, a key problem is to measure how meaningful and interesting the
generated concepts are.

— Concept Space Exploration takes as input a search space of possible new concepts
and locates interesting concepts in it. The space can be specified either declaratively
or procedurally. A poetry writing system, for instance, can take as input a template
with blanks to fill with words. This specifies a search space of possible poems, or
concepts. Again, a crucial and non-trivial issue is how the quality of new concepts
is measured.

The above accounts of concept creation differ in terms of their input and thus help to
characterize different settings where concept creation is used. The techniques involved
may, however, share methodological similarities; see the references given above for
overviews. In particular, many of the above concept creation techniques can actually
be described as search [Wiggins 2006a; 2006b], where the search space and the ways
of traversing it depend on the specific technique. This makes it sometimes difficult to
tell if a system is exploratory in nature or rather more of one of the above types of
concept creation. For instance, different operations used in concept mutation can be
seen as traversing a space of concepts; the space reachable by the system is defined by
the initial concept to be mutated and all possible combinations of mutation operations.

Additionally, there is transformational creativity where the system also adjusts its
own operation [Boden 1990]. Transformational or meta-creativity takes any of the
above types of concept creation onto a more abstract level where additionally the data,
assumptions, search methods, evaluation metrics or goals are also modified. This po-
tentially takes a system towards higher creative autonomy [Jennings 2010].

The formalization by Wiggins [2006a] of creativity as search gives a unifying formal-
ization over Boden’s categorization (and of ours). He shows not only how both combina-
torial and exploratory creativity can be seen as search at the concept level, as already
mentioned above, but also how transformational creativity can be seen as search at
the meta-level, i.e. on a level including also meta-information about the concept level
search. This provides a powerful way of describing and comparing a wide range of
creative systems.

As can be seen from the categorization above, techniques from machine learning
find applications in several concept creation tasks. For a recent review on the use of
machine learning in computational creativity, including the transformational case, see
Toivonen and Gross [2015].

The space does not allow proper review of approaches and techniques suitable for
concept creation, so that is left outside the scope of this paper. In the review that fol-
lows, we complement the more abstract works of Boden [1990] and Wiggins [2006a] by
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presenting concrete conceptual representations that have been used in computational
concept creation.

1.2. Organizing Conceptual Representations
Conceptual representations can be distinguished, at least, under two perspectives. One
is the level of representation (symbolic, spatial vs. connectionist representations), and
the other is descriptive vs. procedural representations. We give a brief introduction to
these distinctions below.

Levels of Conceptual Representations. Gärdenfors [2000] proposes three levels of cog-
nitive representations: a symbolic level; a conceptual level modeled in terms of concep-
tual spaces, which we term the spatial level here; and a sub-conceptual connectionist
level. His theory is aimed at studying cognitive functions of humans (and other ani-
mals) as well as artificial systems capable of human cognitive functions. The idea is
that all these three levels are connected, sensory input to the connectionist level feed-
ing spatial representations of concepts, which then become symbolic at the level of
language.

— At the symbolic level, information is represented by symbols. Rules are defined to
manipulate symbols. Symbolic representations are often associated with Good Old
Fashioned AI2 (GOFAI) [Haugeland 1985]. An underlying assumption of GOFAI re-
search is that human thinking can be understood in terms of symbolic computation,
in particular, computation based on formal principles of logic. However, symbolic
systems have proved less successful in modeling aspects of human cognition beyond
those closely related to logical thinking, such as perception. Furthermore, within a
symbolic representation, meaning is internal to the representation itself; symbols
have meaning only in terms of other symbols, and not directly in terms of any real
world objects or phenomena they may represent. Gärdenfors proposes addressing
this symbol grounding problem by linking symbols at this level to conceptual struc-
tures at the spatial conceptual level below. In linguistic terms, words (or expressions
in a language of thought [Fodor 1975]) exist at this symbolic level, but ground their
meaning (semantics) in the spatial level.

— At the spatial level, information is represented by points or regions in a conceptual
space which is built upon quality dimensions with defined geometrical, topological
or ordinal properties. Similarity between concepts is represented in terms of the
distance between points or regions in a multidimensional space. This formalism of-
fers a parsimonious account of concept combination and acquisition, both of which
are closely related to conceptual similarity. Moreover, by defining dimensions with
respect to perceptual qualities, spatial representations are grounded in our experi-
ence of the physical world, which provides a semantics closely aligned with a human
sense of meaning.

— At the connectionist level, information is represented by activation patterns in
densely connected networks of primitive units. A particular strength of connection-
ist networks is their ability to learn concepts from observed data by progressively
changing connection weights. Nevertheless, the weights between units in the net-
work offer limited explanatory insights into the process being modeled, which re-
quires an understanding of the computation of each unit.

The three levels of representation outlined above differ in representational gran-
ularity, and each level has its own strengths and weaknesses in modeling cognitive
and creative functions. While Gärdenfors [2000] takes the spatial level (which he calls

2https://en.wikipedia.org/wiki/Symbolic artificial intelligence.
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the “conceptual level”) as the most appropriate for modeling concepts, he stresses the
links between the levels and that different representational formalisms should be seen
as complementary, rather than competing. As such, choices of representation should
be made in accordance with scientific aims and in response to the challenges of the
particular problem at hand.

It is important to distinguish between the axis of these different levels of computa-
tional representation and the quite orthogonal axis supplied by the nature of human
conceptualization, most particularly shown in categorical perception. Here, the hierar-
chical form is of the thing being modeled, and not of the modeling formalism.

For example, a specific phenomenon that can occur in human conceptualization is
found in categorical perception, in which the process of categorization has an ampli-
fying effect on the underlying perception, by strengthening the perceptual differences
across category boundaries and weakening them within boundaries. The classical ex-
ample is speech perception, in which a varying speech sound is identified in terms
of either one or another distinctive phoneme, even though a sharp distinction is ob-
jectively not present in the underlying sound pattern. Other examples of categorical
perception are found in music (for example, musical note identification) and vision
(color categorization)—see Goldstone and Hendrickson [2010] for a recent overview).
A further complication, as for example in color categorization, is that the categories
can be hierarchical, as “red” is a super-category of “scarlet” and “vermilion”. The rep-
resentations surveyed here capture these points in various ways.

Also, in the case of human conceptualization the question arises as to why (e.g., from
an evolutionary or developmental perspective) concept formation based on perceptual
categorizations emerged. That is, why humans would tend to distinguish different cat-
egories even when the underlying perceptual domain is continuous. Perhaps this re-
sults from the close (evolutionary) relation between perception and action [van der
Velde 2015]. In performing an action we (often) need to choose just one option out of
many, given the physical boundary conditions related to the action. Simply stated, we
can run in only one direction at a time, which forces a choice between the many op-
tions that could be available. The process of making such a choice could also affect the
process of classifying the underlying perceptual domain.

Descriptive vs. Procedural Representations. The other perspective to conceptual rep-
resentations is the distinction between descriptive and procedural representations.
As the name indicates, a descriptive representation describes the artifact being rep-
resented. The description may be low or high level, complete or partial. A procedural
representation, on the other hand, specifies a procedure, e.g., a program, that once ex-
ecuted produces the artifact being represented. Similar to descriptive representations,
the procedure may be low or high level, complete or partial. A procedural representa-
tion is sometimes more succinct than a descriptive representation of the same idea. An
example is the Fibonacci numbers—comparing the definition based on recurrence with
an infinite sequence of integers. Conversely, for everything we know how to produce,
there exists at least one procedural representation, although in many cases descrip-
tive representations are employed. Like the three levels of representations introduced
above, descriptive and procedural representations each have particular advantages
and deficiencies. At each of the three levels, both descriptive and procedural represen-
tations exist or can be constructed.

A noteworthy point is that the conceptual representations discussed in this review
are for the purpose of eliciting certain information or knowledge which affords certain
inferences. Any conceptual representation can be ‘represented’ in other forms for pur-
poses other than the one discussed here, e.g., any procedural representation has to be
implemented in program code to be executed.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.
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Outline and Structure of This Paper. In this review, we bring together conceptual
representations relevant to concept creation, which are either the targets of concept
creation or part of creating other concepts. Some representations have general pres-
ence in computer science while others were especially created for concept creation,
such as bisociation (Section 2.1), procedural representations of music and image (Sec-
tion 5), and plan operator for story generation (Section 6.1.3). Part of the conceptual
representations reviewed are relevant to a broad range of creative tasks (Section 2, 3,
4 and 5), while part of them are unique for certain creative domains (Section 6). For
every representation reviewed, we cover the inference it supports, the computational
means of building it, and its application in concept creation.

The conceptual representations included in this review are primarily organized ac-
cording to the distinction between symbolic, spatial and connectionist representations,
in Sections 2, 3 and 4 respectively. Symbolic and spatial representations are predomi-
nately descriptive, and connectionist representations can largely be considered proce-
dural. Procedural representations, across the three levels, are reviewed in Section 5.
Section 6 introduces conceptual representations used in four popular research domains
of the computational creativity community: language, music, image and emotion. The
information in the four domains may have representations at all the three levels and
both descriptive and procedural representations. Discussions on the results of this re-
view, conclusions and future work are presented in Section 7.

2. SYMBOLIC REPRESENTATIONS
Symbols are used to represent objects, properties of objects, relationships, ideas and
so forth. Certain symbols might be better discussed within domains. For instance, in
Section 6, we introduce symbols used in the domains of language, music, image and
emotion, such as word, music note and pixel matrix. These are atomic representa-
tions. Examples of more complex symbolic representations include plan operator, SVG
(Scalable Vector Graphics) file and emotional categories. In this section, we present
symbolic representations that are applicable to many domains, including association,
semantic relation, semantic network, ontology, information network and logic.

2.1. Association
Association means “something linked in memory or imagination with a thing or per-
son; the process of forming mental connections or bonds between sensations, ideas, or
memories”3. Association assumes a connection between concepts or symbols C1 and
C2, but does not assume any specific conditions on C1 and C2. Also, the nature of the
connection is not of primary focus, contrasting it with semantic relation (Section 2.2),
semantic network (Section 2.3) and ontology (Section 2.4).

In the field of computational creativity, the associations spanning over two differ-
ent contexts (domains/categories/classes) are of special interest, in line with Mednick’s
definition of creative thinking as the ability of generating new combinations of distant
associative elements [Mednick 1962]. Koestler [1964] also identified such cross-domain
associations as an important element of creativity, and calls them bisociations. Fig-
ure 1 shows a schematic representation of bisociation, where concepts C1 and C2, from
two different contexts D1 and D2 respectively, are bisociated. Bisociations, in various
contexts, may be especially useful in discovering or creating analogies and metaphors.

According to Berthold [2012], bisociation can be informally defined as “(sets of)
concepts that bridge two otherwise not—or only very sparsely—connected domains
whereas an association bridges concepts within a given domain.” We argue that two
concepts are bisociated if there is no direct, obvious evidence linking them, one has

3http://www.merriam-webster.com/dictionary/association.
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Domain D1

C1

Domain D2

C2

Fig. 1. Bisociation between concept C1 in domain D1 and concept C2 in domain D2.

Domain D1

C1 B

Domain D2

C2

Fig. 2. Bisociation between concepts C1 and C2 using a bridging concept B.

to cross contexts to find the link, and this new link provides novel insights into the
domains. The bisociative connection between C1 and C2 may be represented together
with a bridging concept B, which has links to both C1 and C2 (see Figure 2). An exam-
ple is the bisociation between evolution in nature and evolutionary computing bridged
with the concept “optimization”. In addition to bridging concepts, Berthold [2012] in-
troduces other types of bisociations, i.e. bridging graphs and bridging by structural
similarity. The author points out that bridging concepts and bridging graphs require
that the two domains have a certain type of neighborhood relation, while bridging by
structural similarity allows matching on a more abstract level.

A number of bisociation discovery methods are based on graph representations of
domains and finding cross-domain connections which are potentially new discover-
ies [Dubitzky et al. 2012]. It has also been shown by Swanson [1990] that bisociation
discovery can be tackled using literature mining methods. Swanson proposed a method
for finding hypotheses spanning over previously disjoint sets of literature. To find out
whether phenomenon a is associated with phenomenon c although there is no direct
evidence for this in the literature, he searches for intermediate concepts b connected
with a in some articles, and with c in some others. Putting these connections together
and looking at their meaning may provide new insights about a and c.

Let us illustrate this with an example that has become well known in literature min-
ing. In one of his studies, Swanson investigated if magnesium deficiency could cause
migraine headaches. He found more than 60 pairs of articles—consisting of one article
from the literature about migraine (c) and one article from the literature about mag-
nesium (a)—connecting a with c via various third terms b. For example, in literature
about magnesium there is a statement that magnesium is a natural calcium channel
blocker, while in the literature about migraine we read that calcium channel block-
ers can prevent migraine attacks. In this case, calcium channel blockers are a bridge
between the domains of magnesium and migraine. Closer inspection showed that 11
identified pairs of documents were, when put together, suggestive and supportive for a
hypothesis that magnesium deficiency may cause migraine headaches [Swanson 1990].

Many researchers have followed and further developed Swanson’s idea of searching
for linking terms between two domains in the framework of literature mining. An
overview of the literature-based discovery approaches and challenges is provided by
Bruza and Weeber [2008]. Furthermore, some other data mining approaches, such as
co-clustering and multimode clustering [Govaert and Nadif 2014], may be suitable for
identifying certain types of bisociations.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.
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Table I. Selected Research on Extracting Semantic Relations

Hyponymy-hypernymy
Hearst 1992; Caraballo 1999; Kozareva et al. 2008;
Pantel and Ravichandran 2004; Pantel and Pennacchiotti 2006;
Snow et al. 2005; Navigli and Velardi 2010; Bordea et al. 2015

Meronymy-holonymy Berland and Charniak 1999; Girju et al. 2006;
Ittoo et al. 2010; Pantel and Pennacchiotti 2006

Causal relations Khoo et al. 2000; Girju and Moldovan 2002; Blanco et al. 2008;
Ittoo and Bouma 2011

2.2. Semantic Relation
Broadly speaking, semantic relations are labeled relations between meanings, as well
as between meanings and representations. In contrast to associations, semantic rela-
tions have meanings as indicated by their labels. The number of semantic relations
is virtually unlimited. Some important semantic relations are synonymy, homonymy,
antonymy, hyponymy-hypernymy, meronymy-holonymy, instance of relation, causal re-
lation, locative relation and temporal relation. Besides the general relation types, there
are domain-specific relations, such as the ingredient of relation in the food domain, or
the activates relation in the biomedicine domain.

Here we briefly review how semantic relations have been extracted from various
sources, mostly text (see Table I for a summary of selected research). We distinguish
between approaches based on lexico-syntactic patterns and machine learning. The pi-
oneering work of Hearst [1992] opened the era of discovering semantic relations using
lexico-syntactic patterns. An example of lexico-syntactic patterns used in the auto-
matic detection of hyponyms is “NP1 such as NP2”, where NP2, a noun phrase, is
potentially a hyponym of NP1, another noun phrase. With a set of seed instances of
certain relation (e.g., hyponymy), this method identifies sequences of text that occur
systematically between the concepts of the instances. The patterns discovered are used
in the automatic extraction of new instances. In this line of work, the relations that
form the backbone of ontologies were first considered, e.g., hyponymy [Hearst 1992]
and meronymy [Berland and Charniak 1999], followed by other relations, such as
book author [Brin 1999], organization location [Agichtein and Gravano 2000], inven-
tor [Ravichandran and Hovy 2002], etc.

As an alternative approach, machine learning techniques have been applied to the
extraction of semantic relations from text. An overview of methods with different de-
grees of supervision is given by Nastase et al. [2013]. Unsupervised methods, e.g.,
based on clustering or co-occurrence, are mostly used to discover hypernymy and syn-
onymy relations, and often in combination with pattern-based methods [Caraballo
1999; Pantel and Ravichandran 2004]. In supervised machine learning, models are
trained by generalizing from labeled examples of expressed relations. Labeled data
was provided as part of some shared tasks, such as semantic evaluation workshops
(SemEVAL). SemEval-2007 Task 4 [Girju et al. 2007] provides a dataset of meronymy,
causality, origin, etc., followed by a dataset of some other relations in SemEval-2010
Task 8 [Hendrickx et al. 2010]. In addition, SpaceEval 20154 focuses on various spa-
tial relations, such as path, topology and orientation. Navigli and Velardi [2010] used
an annotated dataset of definitions and hypernyms for learning word class lattices.
Instead of manually annotated datasets, WordNet [Fellbaum 1998; Miller et al. 1990],
Wikipedia5 and other resources can be used for distant supervision (as large seeds for
bootstrapping) [Snow et al. 2005; Mintz et al. 2009].

In contrast to extracting predefined semantic relations, the Open Information Ex-
traction (OIE) paradigm does not depend on predefined patterns, but considers rela-

4http://alt.qcri.org/semeval2015/task8/.
5http://www.wikipedia.org.
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Fig. 3. An example of semantic network.

tions as expressed by parts of speech [Fader et al. 2011], paths in a syntactic parse
tree [Ciaramita et al. 2005], or sequences of high-frequency words [Davidov and Rap-
poport 2006]. OIE methods are used in ReVerb [Etzioni et al. 2011], Ollie [Mausam
et al. 2012] and ClausIE [Del Corro and Gemulla 2013].

Besides general semantic relations, automatically extracted semantic relations have
been part of knowledge discovery in many specific domains, such as biology [Miljkovic
et al. 2012], and have potential for concept creation, too. Semantic relations are also
important components of semantic networks (Section 2.3) and ontologies (Section 2.4).

As well as the specific relations between symbols discussed here, other approaches
take a more generally relational view of semantics, seeing text or word meanings in
terms of statistical relations to other words (in the form of topic models, latent vectors,
or distributional semantics, for example); we introduce such approaches in the section
about spatial representations below (Section 3).

2.3. Semantic Network
Semantic networks [Sowa 1992] are a category of symbolic representations that rep-
resent collections of semantic relations between concepts. Figure 3 shows a small se-
mantic network, which represents the sentences “The bottle contains wine. Wine is a
beverage.” The concepts, i.e. “bottle”, “wine” and “beverage”, are denoted by nodes, and
the relations between them, i.e. contains/contain and is-a, are represented by directed
edges. The meaning of a concept is defined in terms of its connections with other nodes
(concepts). The closely related semantic link networks [Zhuge 2012] are self-organized
semantic models similar in many ways to semantic networks but emphasizing larger
semantic richness and automatic link discovery.

An example of existent large semantic networks is ConceptNet [Liu and Singh
2004], a semantic network of commonsense knowledge. In ConceptNet, nodes are
semi-structured English fragments, including noun, verb, adjective and prepositional
phrases. Nodes are interrelated by one of the twenty four types of semantic relations,
such as IsA, PartOf, UsedFor, MadeOf, Causes, HasProperty, DefinedAs, and Concep-
tuallyRelatedTo, represented by directed edges. The early versions of ConceptNet were
built on the data of the Open Mind Common Sense Project6, which collects common-
sense knowledge from volunteers on the web by asking them to fill the blanks in sen-
tences [Singh et al. 2002]. ConceptNet 57, the current version, extends the previous
versions with information automatically extracted from Wikipedia, Wiktionary8 and
WordNet.

Semantic networks have wide applications, such as database management [Rous-
sopoulos and Mylopoulos 1975], cybersecurity [AlEroud and Karabatis 2013], software
engineering [Karabatis et al. 2009], etc. Semantic networks are also popular knowl-

6http://openmind.media.mit.edu.
7http://conceptnet5.media.mit.edu.
8http://en.wiktionary.org/wiki/Wiktionary:Main Page.
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edge sources in the computational creativity community. ConceptNet alone has been
used in generating cross-domain analogies [Baydin et al. 2012], metaphor ideas for
pictorial advertisements [Xiao and Blat 2013], Bengali poetry [Das and Gambäck
2014], and fictional ideas [Llano et al. 2016], as well as testing the novelty of vi-
sual blends [Martins et al. 2015]. Baydin et al. [2012] actually go beyond just using
semantic networks, they also generate novel analogous semantic networks using an
evolutionary algorithm.

Formally, semantic networks can in some cases be viewed as alternatives to spatial
representations, the most obvious case being where nodes correspond with points in
the space, and relations attached to arcs correspond with distances between them.
This, however, is not a very conventional view. More common is the usage where nodes
represent objects and values, and arcs represent relations between things represented
by nodes, which is a much less subtle, and more logic-like approach. The geometry of
spatial representations affords many implicit concepts that must be made explicit in
the network formalism; this may be positive or negative depending on application. For
example, in color space, red is a super-concept of scarlet and vermilion merely by virtue
of geometry, and, given that the space is a good perceptual model, distances are implicit
and do not need to be recorded; in a network representation the super/sub-concept
relation would need to be recorded explicitly. But many concepts do not conform to the
regularity of Euclidean geometry, and in these cases, a network representation may be
more appropriate.

As a symbolic representation, the meanings of concepts (nodes) in a semantic net-
work are specified purely in terms of relations to other symbolic concepts – there is no
grounding [Harnad 1990]. However, mappings between symbolic networks and spatial
representations, such as Gärdenfors [2000] theory of Conceptual Space (cf. Section 3.1),
could be developed to leverage the strengths of each form of representation. For ex-
ample, the “wine” and “beverage” concepts from the semantic network in Figure 3
could correspond to regions in a conceptual space, whereby “wine” would typically be a
sub-region of “beverage” within some set of contextually appropriate dimensions. This
geometrical relationship implicitly represents that “wine” is a kind of “beverage”, as
opposed to the explicit “is-a” type relation used in the semantic network.

2.4. Ontology
A widely accepted definition of ontology in computer science is by Gruber [2009]:

“In the context of computer and information sciences, an ontology defines a
set of representational primitives with which to model a domain of knowl-
edge or discourse. The representational primitives are typically classes (or
sets), attributes (or properties), and relationships (or relations among class
members).”

In computer science (and computational creativity) we can thus understand ontologies
as resources of formalized knowledge, but the degree of formalization can vary.9

The relationship between ontologies and semantic networks is that ontologies pro-
vide representational primitives that can be used in semantic networks. The struc-
tural backbone of an ontology is a taxonomy, which defines a hierarchical classification
of concepts, while an ontology represents a structured knowledge model with various
kinds of relations between concepts and, possibly, rules and axioms [Navigli 2016]. For

9Different communities use the word “ontology” for different meanings. In philosophy, “ontology” refers
to the philosophical discipline dealing with the nature and structure of “reality” and is opposed to episte-
mology, which concerns the understanding of reality and the nature of knowledge [Guarino and Giaretta
1995].
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instance, the expression “the bottle contains wine” in a semantic network (Figure 3)
obtains a much richer meaning when combined with ontologies that include “bottle”,
“contains” and “wine”, as well as their properties and relations allowing one to reason
with them.

We can distinguish between upper, middle and domain ontologies [Navigli 2016].
Upper ontologies encode high level concepts (e.g., concepts such as “entity”, “object”
and “situation”), and are usually constructed manually. Their main function is to sup-
port interoperability between domains. They are often linked to several lower level
ontologies. Examples of upper level ontologies are SUMO [Pease and Niles 2002],
DOLCE [Gangemi et al. 2002] and Cyc10 [Lenat 1995]. Middle ontologies are general
purpose ontologies and provide the semantics needed for attaching to domain specific
concepts. For instance, WordNet [Fellbaum 1998; Miller et al. 1990] is a widely used
middle ontology. Domain ontologies model the concepts, individuals and relations of
the domain of interest (e.g., the Gene Ontology11). Existent ontologies often have more
than one level, e.g., SUMO and WordNet contain the upper level concepts, middle on-
tologies and some domain ontologies.

From the perspective of the amount of conceptualization, Sowa [2010] and Biemann
[2005] distinguish between formal (also called axiomatized), terminological (also called
lexical) and prototype-based ontologies (Figure 4).

— Formal ontologies (e.g., SUMO) are represented in logic, using axioms and defini-
tions. Their advantage is the inference mechanism, enabling the properties of en-
tities to be derived (see in Figure 4 how one can derive that “chili con carne” is
“non-vegetarian” food). Nevertheless, a high encoding effort is needed and there is
a danger of running into inconsistencies.

— Terminological ontologies (e.g., WordNet) have concept labels (terms used to express
them in natural language). The lexical relations between terms, e.g., synonymy,
antonymy, hypernymy and meronymy, determine the relative positions of concepts
but do not completely define them. The difference between a terminological ontology
and a formal ontology concerns its degree [Sowa 2010]. If represented as a graph, a
terminological ontology is a special type of semantic network (see Section 2.3).

— Prototype-based ontologies represent categories (concepts) with typical instances
(rather than concept labels or axioms and definitions in logic). New instances are
classified based on a selected measure of similarity. Typically, prototype-based on-
tologies are taxonomies, since they are limited to hierarchical (unspecified) rela-
tions and are constructed by clustering techniques. Formal and prototype-based on-
tologies are often combined into mixed ontologies, where some subtypes are distin-
guished by axioms and definitions, but other subtypes are distinguished by proto-
types. Gärdenfors’ theory, which affords a kind of geometrical reasoning comparable
with the logical reasoning afforded by ontologies, also affords reasoning about pro-
totypes [Gärdenfors 2000].

Taxonomy and ontology learning can be built upon the methods of automatically ex-
tracting semantic relations (see Section 2.2). For instance, Kozareva and Hovy [2010]
and Velardi et al. [2013] use a combination of pattern- and graph-based techniques.
Also, clustering techniques have been used in taxonomy learning [Cimiano et al. 2005;
Fortuna et al. 2006].

Ontologies have been used in many computational creativity tasks. The combination
of thematically different ontologies is applied in modeling analogies (relating differ-
ent symbols based on their similar axiomatisation), metaphors (blending symbols of a

10OpenCyc is a public version of Cyc (which is proprietary).
11http://geneontology.org.
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Fig. 4. Examples of a) formal ontology, b) terminological ontology and c) prototype-based ontology [Biemann
2005]. Note that b) and c) illustrate only the structural backbones of the two ontologies. c© Chris Biemann.
Reproduced by permission.

source domain into a target domain, based on an analogy, and imposing the axioma-
tisation of the former on the latter), pataphors (extending a metaphor by blending
additional symbols and axioms from the source domain into the target, thus result-
ing in a new domain where the metaphor becomes reality), and conceptual blending
(blending and combining two domains for the creation of new domains) [Kutz et al.
2012].

2.5. Information Network
Information networks refer to any structure with connected entities, such as social net-
works. Mathematically, an information network can be represented as a graph, where
graph vertices represent the entities, and edges represent the connections between
them. Semantic networks are a special case of information networks where vertices
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and edges carry semantic meaning, i.e. labeled by semantic concepts. Information net-
works represent a broader category of knowledge representation than semantic net-
works. Study of information networks is less focused on the meaning encoded in the
connections (which is the main focus of studying semantic networks) but more on the
structure of networks

Studies of information networks include the work of Sun and Han [2013], where an
information network is defined simply as a directed graph where both the nodes and
edges have types and the edge type uniquely characterizes the types of its adjacent
nodes. When there are more than one type of node or edge in an information network,
the network is called a heterogeneous information network; if it has only one type of
node and only one type of edge, it is a homogeneous information network.

There are plenty examples of information networks. Bibliographic information net-
works [Juršič et al. 2012; Sun and Han 2012] are networks connecting the authors of
scientific papers with their papers. Specifically, they are heterogeneous networks with
two types of nodes (authors and papers), and two types of edges (citations and author-
ships). Online social networks represent the communication in online social platforms.
Biological networks contain biological concepts and the relations between them.

The methods of discovering new knowledge in homogeneous information networks
can be split into several categories: node/edge label propagation [Zhou et al. 2003], link
prediction [Barabâsi et al. 2002; Adamic and Adar 2003], community detection [Yang
et al. 2010; Plantié and Crampes 2013], and node/edge ranking [Jeh and Widom 2002;
Kondor and Lafferty 2002]. A popular set of methods are based on eigenvalues and
eigenvectors (commonly referred to as spectral methods). For example, in detecting
communities, the community structure is extracted from either the eigenvectors of the
Laplacian matrix [Donetti and Munoz 2004] or the stochastic matrix [Capocci et al.
2005] of the network.

The methods developed for homogeneous information networks, as introduced above,
can be applied to heterogeneous information networks by simply ignoring the hetero-
geneous information altogether. This does, however, decrease the amount of informa-
tion used and can therefore decrease the performance of the algorithms [Davis et al.
2011]. Approaches that take into account the heterogeneous information are therefore
preferable, such as network propositionalization [Grčar et al. 2013], authority rank-
ing [Sun et al. 2009; Sun and Han 2012], ranking based clustering [Sun et al. 2009;
Sun and Han 2012], classification through label propagation [Hwang and Kuang 2010;
Ji et al. 2010], ranking based classification [Sun and Han 2012], and multi-relational
link prediction [Davis et al. 2011].

2.6. Logic
Many kinds of logics have been used to represent concepts and complex knowledge,
such as classical First Order Logic, Modal Logics—including Linear Temporal Logic
and Deontic Logic—and other non-classical logics, e.g., Default and Non-Monotonic
Logics.

A declarative representation of a concept can be a single symbol. More complex con-
cepts can be represented by the composition of simpler formulas (corresponding to
simpler concepts). These compositions are built by establishing some relations (e.g.,
conjunction, disjunction, negation, implication, etc.) between concepts. Ontologies (see
Section 2.4) are built with a specific sub-family of logic languages, i.e. the description
logics—the veg food(x) concept in Figure 4 is one such example resorting to first order
logic.

Logic-based symbolic approaches can be used to represent and reason with both
time-independent and temporal concepts [Bouzid et al. 2006]. In addition to descriptive
representations of concepts, logic-based approaches, in particular Logic Programs, can
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Fig. 5. The color space in terms of hue (radial angle in the horizontal plane), brightness (vertical axis), and
saturation (horizontal radial magnitude), which are integral dimensions and therefore form a domain.

also be used for symbolic procedural representations via inductive definitions [Hou
et al. 2010]—e.g., the following Logic Program (written in Prolog) defines the concepts
of even and odd natural numbers, assuming suc(X) stands for the successor of the
natural number X:

even(0).
even(suc(X)) : − odd(X).
odd(suc(X)) : − even(X).

The use of logical representations and tools in computational creativity tasks has
just started. Two of such work concern the computational modeling of conceptual
blending, a cognitive process which, by selectively combining two distinct concepts,
leads to new concepts, called “blends” [Fauconnier and Turner 1998]. Besold and Plaza
[2015] constructed a conceptual blending engine based on generalization and amal-
gams; and Confalonieri et al. [2015] used argumentation in order to evaluate concep-
tual blends.

3. SPATIAL REPRESENTATIONS
In comparison to symbolic and connectionist representations, the importance of spatial
representations was raised by Gärdenfors [2000] with the theory of Conceptual Spaces.
Since before Gärdenfors’ proposal, in the computing community, a spatial represen-
tation called Vector Space Model (VSM) has been a popular tool for modeling many
different domains and applications [Dubin 2004], with topic model being a prominent
example of concept creation. In this section, we introduce these three kinds of spatial
representations and their relevance to concept creation.

3.1. Gärdenfors’ Conceptual Spaces
Gärdenfors [2000] proposes a geometrical representation of concepts, named concep-
tual spaces. A conceptual space is formed by quality dimensions, which “correspond
to the different ways stimuli are judged to be similar or different” [Gärdenfors 2000,
p. 6]. An archetypal example is a color space with the dimensions hue, saturation (or
chromaticism) and brightness. Each quality dimension has a particular geometrical
structure. For instance, hue is circular, whereas brightness and saturation have finite
linear scales (Figure 5). It is important to note that the values on a dimension need
not be numbers.

A domain is a set of integral (as opposed to separable) dimensions, meaning that no
dimension can take a value without every other dimension in the domain also taking a
value. Therefore, hue, saturation and brightness in the above color model form a single
domain. A conceptual space is simply “a collection of one or more domains” [Gärdenfors
2000, p. 26]. For example, a conceptual space of elementary colored shapes could be
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defined as a space comprising the above domain of color and a domain representing
the perceptually salient features of a given set of shapes.

A property corresponds to a region of a domain in a conceptual space (and
more specifically, a natural property corresponds to a convex region). A concept in
Gärdenfors’ formulation is represented in terms of its properties, normally including
multiple domains. Interestingly, this means that property is a special, single-domain
case of concept. For instance, the concept “red” is a region in the color space. It is also
a property of anything which is red.

An object is a point in a space (i.e. a point in a certain region (property) of each of
one or more domains). The spatial location of an object in a conceptual space allows the
calculation of distance between objects, which gives rise to a natural way of represent-
ing similarities. The distance measure may be a true metric (for example, Gärdenfors
[2000] suggests that Euclidean distance is often suitable with integral dimensions, and
cityblock distance with separable dimensions); or non-metric, such as a measure based
on an ordinal relationship or the length of a path between vertices in a graph. When
calculating distance, salience weights associated with each of the dimensions can be
varied. It is the context in which a concept is used that determines which dimensions
are the most prominent, and hence, have bigger weights.

Such spatial representations naturally afford reasoning in terms of spatial regions.
Boundaries between regions are fluid, an aspect of the representation that may be
usefully exploited by creative systems searching for new interpretations of familiar
concepts. A further consequence of the geometrical nature of the representation is
that conceptual spaces are particularly powerful in dealing with concept learning and
concept combination. Learning can be modeled via supervised classification in terms
of distance from prototypical centroids of regions, or via unsupervised clustering based
on spatial distances. Combination can be understood in terms of intersection of spatial
regions, or in terms of replacing values of one concept’s regions by another for more
complex cases where logical intersection fails—see Gärdenfors [2000, Sections 4.4, 4.5]
for discussion.

While Gärdenfors’ theory has yet to be fully formalized in mathematical terms, sev-
eral approaches to formalization of some aspects of it have appeared in the literature.
Two approaches build on an initial formalization by Aisbett and Gibbon [2001]. One,
based on fuzzy set theory, is presented in detail by Rickard et al. [2007b], drawing on
their previous work [Rickard 2006; Rickard et al. 2007a]. The other, employing vec-
tor spaces, is presented by Raubal [2004], with subsequent related work by Schwering
and Raubal [2005] and Raubal [2008]. Moreover, Chella and colleagues [2004; 2007;
2008; 2015] have done substantial work in formalizing Conceptual Space theory and
applying it to robotics. There is empirical evidence to support the theory as a cognitive
model [Jäger 2010].

3.2. Vector Space Model (VSM)
As Gärdenfors [2000] points out, an appropriate approach to computation with geo-
metric representations is the use of Vector Space Models (VSMs): they provide algo-
rithms and frameworks for classification, clustering and similarity calculation which
lend themselves directly to some of the key questions in conceptual modeling. In text
modeling, the use of VSMs is long established, having been introduced by Salton when
building the SMART information retrieval system [Salton 1971], taking the terms in
a document collection as dimensions. Every document is represented by a vector of
terms, where the value of each element is the (scaled) frequency of the corresponding
term in the document. Each term in a document has a different level of importance,
which can be represented by additional term weights in a document vector. A popular
weighting schema is TF-IDF (Term Frequency - Inverse Document Frequency) [Spärck
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Jones 1972], which is based on the idea that terms that appear in many documents
are less important for a single document. To see how similar two documents are, their
vectors can be compared, with the most commonly used similarity measure being the
cosine value of the angle between the document vectors [Salton 1989]. Such a VSM
assumes pairwise orthogonality between term vectors (the columns), which generally
does not hold due to correlation between terms. The Generalized Vector Space Model
(GVSM) provides a solution for this problem [Wong et al. 1985; Raghavan and Wong
1986].

On the other hand, the same matrix can be used to calculate the similarity between
two terms (words), by taking a different perspective: a term can be represented by
a vector over the documents where they appear (i.e. if document vectors are rows in
the document-term matrix, term vectors are the columns). This approach has been
exploited by Turney and Pantel [2010] to build models of lexical meaning which reflect
human similarity judgments, by reducing the co-occurrence context from the scale of
whole documents to windows of a few words. In a contrasting approach, word vectors
with similar properties are learned by neural networks (see e.g., Mikolov et al. [2013]),
and these are good at capturing syntactic and semantic regularities, often remaining
computationally efficient and retaining low dimensionality—see Baroni et al. [2014]
for a review and comparison. A range of distance measures can also be used with these
models; although cosine distance is the most commonly used, others can be more suited
to different domains and tasks, and Kiela and Clark [2014] show a mean-weighted
cosine distance variant to be most accurate in reflecting human judgments.

Extending the above VSMs to model the compositional meaning of phrases and sen-
tences (rather than individual words) is the subject of much current research, with a
range of methods including hierarchical compression using neural auto-encoders (e.g.,
Socher et al. [2013]), sequence modeling using convolutional networks (e.g., Kalchbren-
ner et al. [2014]), and categorical combination using tensor operations (e.g., Coecke
et al. [2011]). Extension beyond the sentence to models of discourse meaning is also
being investigated (e.g., Kalchbrenner and Blunsom [2013]).

In addition to word-context matrices, pair-pattern matrices have been used in VSMs,
where rows correspond to pairs of terms and columns correspond to the patterns in
which the pairs occur. They are used to measure the similarity of semantic relations
in word pairs [Lin and Pantel 2001; Turney and Littman 2003]. Higher-order tensors
(matrices are second-order tensors), such as a word-word-pattern tensor, has also been
found useful in measuring the similarity of words [Turney 2007].

VSM-based models have been used in generating spoken dialogues [Wen et al. 2016]
and modern haikus [Wong and Chun 2008]. Venour et al. [2010] constructed a novel se-
mantic space, where the distance between words reflects the difference in their styles
or tones, as part of generating linguistic humors. Juršič et al. [2012] took advantage
of a document-term matrix and centroid vectors in order to find bridging terms of two
literatures. Besides constructing VSMs from text, vectors of RGB color values were
used by de Melo and Gratch [2010] to evolve emotional expressions of virtual humans.
Thorogood and Pasquier [2013] used vectors of low-level audio features in generat-
ing audio metaphors. Maher et al. [2013] used vectors of attributes (e.g., display area,
amount of memory, and CPU speed) to measure surprise. Furthermore, the future ap-
plications of VSMs in computational creativity tasks were discussed by McGregor et al.
[2014].

3.3. Topic Model
Topic modeling is a general approach to modeling text using VSMs. It assumes that
documents (or pieces of text) are composed of, or generated from, some underly-
ing latent concepts or topics. One of the earliest variants, Latent Semantic Analysis
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(LSA) [Landauer et al. 1998] has become a widely used technique for measuring simi-
larity of words and text passages. LSA applies singular value decomposition (SVD) to
a standard word-document (or word-context, where “context” refers to some window of
words around a term) matrix; the resulting eigenvectors can be seen as latent concepts,
as they provide a set of vectors that characterize the data but abstract away from the
surface words, while relating words used in similar contexts to each other. By using
these concept vectors as the bases, we obtain a new latent semantic space, and by lim-
iting them to the eigenvectors with the largest values, this space can have a drastically
smaller number of dimensions, while still closely approximating the original. LSA is
not limited to words and their contexts. It can be generalized to unitary event types
and the contexts in which instances of the event types appear (e.g., bag-of-features in
computer vision problems [Sivic et al. 2005]); and it has been successfully applied in
many tasks including topic segmentation [Olney and Cai 2005]. However, while the
number of dimensions chosen for this latent semantic space is critical for performance,
there is no principled way of doing it. Moreover, the dimensions in the new space do
not have obvious interpretations.

An approach which solves some of these problems is Probabilistic Latent Semantic
Indexing (PLSI) [Hofmann 1999]. PLSI can be seen as a probabilistic variant of LSA;
rather than applying SVD to derive latent vectors by factorization, it fits a statistical
latent class model on a word-context matrix using Tempered Expectation Maximiza-
tion (TEM). This process still generates a low-dimensional latent semantic space in
which dimensions are topics, but now these topics are probability distributions over
words—i.e. sets of words with a varied degree of membership to the topic, which we
can see as latent concepts here—and documents are probabilistic mixtures of these
topics. The number of dimensions in the new space is determined according to the sta-
tistical theory for model selection and complexity control. This can be used directly to
model document content and similarity, or e.g., embedded within an aspect Markov
model to segment and track topics [Blei and Moreno 2001].

A shortcoming of PLSI, however, is that it lacks a generative model of document-
topic probabilities: it therefore must estimate these from topic-segmented training
data, and is not directly suitable for assigning probability to a previously unseen docu-
ment, instead requiring an additional estimation process during decoding [Blei and
Moreno 2001]. These are addressed by models such as Latent Dirichlet Allocation
(LDA) [Blei et al. 2003], which take a similar latent-variable approach but make it
fully Bayesian, allowing topics to be inferred without prior knowledge of their distri-
bution. LDA has been used very successfully for fully unsupervised induction of topics
from text in many domains—see e.g., Griffiths et al. [2005] and Hong and Davison
[2010]. It requires the number of topics and certain hyper-parameters to be specified;
but even these can be estimated by hierarchical Bayesian variants—see e.g., Blei et al.
[2004].

Variants of LDA which incorporate data from outside the text can then go even fur-
ther towards full concept discovery by inducing topics with relations between text and
author, social network properties, and so on (see Blei [2012] for an overview). This
has been particularly important in social media modeling, where texts themselves are
very short. Here, extended variants have been developed and successfully applied in
many ways, with the notion of topic (or concept) depending on objective: for example,
to discover and model health-related topics [Paul and Dredze 2014]; to model topic-
specific influences by incorporating information about network structures [Weng et al.
2010]; to detect and profile breadth of interest in audiences using timeline-aggregated
data [Concannon and Purver 2014]; to build predictive models for review sites by in-
cluding user- and location-specific information [Lu et al. 2016]; and to help predict
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stock market movements via incorporating sentiment aspects [Nguyen and Shirai
2015].

Topic models have been used in various ways in the computational creativity com-
munity. Strapparava et al. [2007] used LSA to compute lexical affective semantic sim-
ilarity in order to generate animated advertising messages. Topic vectors are used for
conceptual blending by Veale [2012]. Xiao and Blat [2013] used a LSA space built from
Wikipedia to generate pictorial metaphors.

4. CONNECTIONIST REPRESENTATIONS
Connectionist representations are composed of interconnected simple units, featuring
parallel distributed processing. Hebb [1949] proposes that concepts are represented in
the brain in terms of neural assemblies. The neural blackboard architecture [van der
Velde and de Kamps 2006] suggests a way of combining neural assemblies in order to
account for higher-level human cognition. The most commonly used family of connec-
tionist models are artificial neural networks (ANNs). A more complex version of ANNs,
deep neural networks, provides representations at a series of abstraction levels. In this
section, we introduce these four conceptual representations and their relevance to con-
cept creation.

Given their ‘network-alike’ look, these connectionist representations may resemble
semantic networks (see Section 2.3), ontologies (see Section 2.4) and information net-
works (see Section 2.5). However, in each of the conceptual representations, the rela-
tions (and the way of interaction) between the units of a ‘network’ are fundamentally
different. In particular, most connectionist representations are procedural. They have
no explicit representations of concepts: the representations are rather distributed in
the network and made explicit only when the connectionist representation is executed.
For more detailed discussions on ANN frameworks for distributed representations,
please refer to Kröse and van der Smagt [1993] and Hinton et al. [1986].

4.1. Neural Assembly and Neural Blackboard
Hebb [1949] proposes that concepts are represented in the brain in terms of neural as-
semblies. That is, in modern terminology, one can say that Hebb spoke about concepts
in the brain (e.g., Abeles [2011]). This is also in agreement with Hebb’s hypothesis that
thinking consists of sequential activations of assemblies, or “phase sequences”, as he
called it (e.g., see Harris [2005] for a recent analysis). A neural assembly is a group of
neurons that are strongly interconnected. As a consequence, when a part of an assem-
bly is activated, e.g., by perception, it can reactivate the other parts of the assembly
as well. For example, when we see an animal, certain neurons in the visual cortex will
be active. But when the animal makes a sound, certain neurons in the auditory cortex
will be active as well. Neural assemblies arise over time, based on learning processes
such as Hebbian learning [Hebb 1949], i.e. neurons that fire together wire together.
Over time, other neurons could become a part of the assembly as well, in particular
when they are consistently active together with the assembly. Examples are the neu-
rons that represent the word we use to name the animal, or neurons involved in our
actions or emotions when we encounter it [van der Velde 2015].

Figure 6 illustrates (parts of) a neural assembly that could represent the concept
“dog”. It would consist of the neurons involved in perceiving the animal, but also of
neurons representing the relations is dog, can bark or has fur, and neurons that rep-
resent other aspects of our (e.g., emotional) experiences with dogs. Figure 6 does not
imply that the ovals representing concepts are semantically meaningful on their own.
Each ‘concept node’ in the figure represents a neural assembly, consisting of a network
structure that integrates all aspects of the concept. In particular, it represents the in-
terconnection of perception and action components of the concept, which represents
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Fig. 6. A neural assembly for dog, embedded in a relation structure based on a neural blackboard architec-
ture.

the grounding of the concept in behavior, and thus (part of) its semantics (e.g., see
van der Velde [2015].)

A fundamental issue with neural assemblies is how they can account for the non-
associative aspects of human cognition [van der Velde 1993]. Of course, associations
are crucial because without them we could not survive in any given environment.
But for high-level cognition (e.g., language, reasoning), associations are not enough.
Instead, relations are necessary, because they provide the basis for systematic knowl-
edge. For example, we can apply the relation greater than to any pair of objects, not
just the ones we happen to be acquainted with. In contrast, associations are always
coincidental. For example, in the classical Pavlov experiment, the sound of the bell
was associated with the food, but it could have been any other stimulus (as was indeed
tested by Pavlov). Thus, relational knowledge cannot be established on the basis of
associations alone.

The fact that in human high-level cognition relations are implemented in neural
networks can result in a mixed representation, in which relations and associations
are combined. For example, frequently occurring relations (e.g., dogs chase cats) could
result in a more directly associative link between the concepts involved (“dogs” and
“cats”). Such more direct associations are sometimes used in idioms like “They fight
like cats and dogs”.

As noted, associations are direct links (connections) between neural entities (e.g.,
neurons or neural populations). Associative links, when they are available, result in
very fast activations. In contrast, the more elaborate links provided by relations, which
also require the specific type of relation to be expressed, operate more slowly. In this
way, forming associations on top of relations can provide for a double response; a fast
one based on the associations and a slower one based on the relations. This combina-
tion can help in, say, hazardous circumstances, where speed is essential. It could also
reduce the processing time in specific cases. But, on the reverse side, it could also lead
one astray from the correct analysis.

Van der Velde and de Kamps [2006] present a neural architecture in which (temporal
or more permanent) connections between conceptual representations based on neural
assemblies could be formed. Figure 6 illustrates the relation dog likes black cats, where
the neural assemblies representing the concepts “dog”, “likes”, “black” and “cats” are
interconnected in a neural blackboard. The blackboard consists of neural populations
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that represent the specific types of concepts and the relations between them. Thus, N1

and N2 represent a noun, V a verb, Adj an adjective and S a clause. The connections in
the blackboard are gated connections (consisting of neural circuits). Gated connections
provide control of activation, which allows the representation of relations and hierar-
chical structures, as found in higher-level human cognition. In this way, a temporal
connection can be formed between the conceptual assemblies and populations of the
same type in the blackboard (“dog” with N1, “cats” with N2, “like” with V , “black” with
Adj) and between the type populations themselves, which results in the representation
for the clause (relation) dog likes black cats.

4.2. Artificial Neural Network (ANN)
ANNs draw inspiration from biological neurons, though their usage is usually not to
model human brains [Sun 2008]. The building blocks of ANNs are simple computa-
tional units that are highly interconnected. The connections between the units de-
termine the function of a network. In ANNs, concepts are implicitly represented by
four parts: the network-wide algorithm, the network topology, the computational pro-
cedures in each individual unit, and the weights of their connections. Executing such
algorithms produces explicit representations of concepts in the form of activation pat-
terns, although individual nodes, e.g., in the output layer of an ANN classifier, can
also be seen as outwards facing representations of concepts (e.g., the activation of an
output node is regarded as a representation of the corresponding class/concept). It is,
however, important to highlight that most individual nodes of neural networks carry
no recognizable semantic value.

ANNs can be viewed as directed weighted graphs in which artificial neurons are
nodes and edges are connections between neuron outputs and neuron inputs. Based on
the connection patterns (architecture), ANNs can be grouped into two categories: feed-
forward neural networks, in which graphs have no loops; and recurrent (or feedback)
neural networks [Medsker and Jain 1999], in which loops occur due to feedback connec-
tions. The most common family of feed-forward neural networks is multilayer percep-
tron [Haykin 1994]. Some of the well-known recurrent neural networks are Elman Net-
work[Cruse 1996], Hopfield Network [Gurney 1997], and Boltzmann Machine [Hinton
and Salakhutdinov 2006].

After the learning phase, standard feed-forward networks usually produce only one
set of output values, rather than a sequence of values, for a given input. They are also
memory-less in the sense that their responses to inputs are independent of the pre-
vious network states. Feed-forward neural networks are usually used as classifiers,
by learning nonlinear relationships between inputs and outputs. Typically, the nodes
in the output layer of a feed-forward ANN correspond to regions in the input feature
space, and thus can be seen as representing centroids, or prototypes, of such concep-
tual regions. Recurrent, or feedback, neural networks, on the other hand, are dynamic
systems. Because of the feedback paths, the inputs to neurons are then modified, which
leads the network to enter a new state. Regarding the representation of temporal con-
cepts, recurrent neural networks can be trained to learn and predict each successive
symbol of any sequence in a particular language.

ANNs learn by iteratively updating the connection weights in a network, toward bet-
ter performance on a certain specific task. There are three main learning paradigms:
supervised, unsupervised and hybrid. Since ANNs can learn patterns of neuron acti-
vation (both simultaneous and sequential activations), they can be used to simulate
creative processes, e.g., via combining two or more patterns into a single one, or creat-
ing a random variation of a learned pattern.

Various types of ANNs have been used, in the music domain, for melody gener-
ation [Todd 1992; Eck and Schmidhuber 2002; Hoover et al. 2012], and improvisa-
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tion [Bown and Lexer 2006; Smith and Garnett 2012]. ANNs are also suitable for
evaluation, as for music [Tokui and Iba 2000; Monteith et al. 2010], images [Baluja
et al. 1994; Machado et al. 2008; Norton et al. 2010], poetry [Levy 2001], and culinary
recipes [Morris et al. 2012]. Saunders and Gero [2001] used a particular type of ANN,
the self-organising map (SOM), to evaluate the novelty of images newly encountered
by an agent. An ANN was also used by Bhatia and Chalup [2013] to measure surprise.
In addition, Terai and Nakagawa [2009] used a recurrent neural network to generate
metaphors.

4.3. Deep Neural Network
Deep networks are a recent extension of the family of connectionist representations,
which attempt to model high-level abstractions of data using deep architectures [Ben-
gio et al. 2013]. Deep architectures are composed of multiple levels of nonlinear oper-
ations, such as neural nets with many hidden layers. This usually results in a stack of
“local” networks whose types need not be the same across the entire deep representa-
tion.

The human brain is organized in a deep architecture [Serre et al. 2007]. An input
percept is represented at multiple levels of abstraction, each level corresponding to
a different area of the cortex. The brain also appears to process information through
multiple stages of transformation. This is particularly evident in the primate visual
system, with its sequence of processing stages, from detecting edges, primitive shapes,
to gradually more complex shapes.

Deep representations are built with deep learning techniques [Bengio et al. 2013;
LeCun et al. 2015]. Deep learning algorithms typically operate on networks with fixed
topology and solely adjust the weights of the connections. Each type of deep architec-
tures is amenable to specific learning algorithms: for example, deep convolutional net-
works are usually trained with backpropagation (see e.g., Kalchbrenner et al. [2014]),
while deep belief networks [Hinton et al. 2006; Hinton 2009] are obtained by stack-
ing several Restricted Boltzmann Machines [Hinton and Salakhutdinov 2006], each of
which is typically trained with the Contrastive Divergence algorithm. Deep belief net-
works are based upon probabilistic approaches, whereas other approaches exist, such
as auto-encoders which are based upon reconstruction-based algorithms, and mani-
fold learning which has roots in geometrical approaches. Although the stacked layers
may allow the network to effectively learn the intricacies of the input, the fact that
they usually have a fixed topology imposes representation and learning limits a priori.
In contrast, a deep learning algorithm for dynamic topologies, allowing the creation
of new nodes or layers of nodes, would enable the creation of new concepts and new
dimensions in a conceptual space.

Deep representations and learning have been used in modeling and generating lan-
guage (see Section 3.2), producing jazz melodies [Bickerman et al. 2010], creating
spaceships for 2D arcade-style computer games [Liapis et al. 2013], generating im-
ages [Goodfellow et al. 2014; Gregor et al. 2015], transferring visual styles [Gatys et al.
2015], and as part of a computational framework of imagination [Heath et al. 2015].

5. PROCEDURAL REPRESENTATIONS
A procedural representation of an artifact specifies a procedure, e.g., a program, that
once executed produces the artifact being represented. To illustrate the difference be-
tween descriptive and procedural representations, we will resort to an example in the
musical domain, the task of representing a sequence of pitches. Using a descriptive ap-
proach one could, for instance, use a vector of pitch values to represent this sequence.
A procedural representation would, for instance, use a program to generate the se-
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quence of pitches by performing a set of operations on sub-sequences. An example is
the GP-Music system [Johanson and Poli 1998].

“The item returned by the program tree in the GP-Music System is not a
simple value but a note sequence. Each node in the tree propagates up a
musical note string, which is then modified by the next higher node. In this
way a complete sequence of notes is built up, and the final string is returned
by the root node. Note also that there is no input to the program; the tree
itself specifies a complete musical sequence.”

It is straightforward to conceive a naive descriptive representation, since we can al-
ways resort to the enumeration of the elements of the artifact. Therefore one should
ponder about the motivation for using procedural representations. A program can take
advantage of the structure of an artifact—e.g., repetition of note sequences, relations
between sequences, cycles, etc.—and as such the size of the procedural representation
of an artifact that has structure can be significantly smaller than the size of its de-
scriptive representation. Additionally, it is also easier to induce structural changes, in
the case of creating new concepts.

Procedural representations are particularly popular for image creation in Evolution-
ary Computation (EC). Many of them are expression-based, such as the example in
Figure 7 showing both a symbolic expression and the corresponding image produced
by this expression. Some notable examples of expression-based evolutionary compu-
tation are by Sims [1991], Rooke [1996], Unemi [1999], Saunders and Gero [2001],
Machado and Cardoso [2002] and Hart [2007].

Machado et al. [2010] evolved non-deterministic context free grammars. The gram-
mars are represented by means of a hierarchic graph, which is manipulated by graph-
based crossover and mutation operators. The context free grammar constitutes a set
of program instructions that are executed in order to generate the visual artifacts; so
while the grammar has a symbolic representation, the representation of the image is
procedural. One of the novel aspects of this approach is that each grammar has the
potential to represent, and generate, a family of akin shapes (Figure 8).

Zhu and Mumford [2007] used stochastic context sensitive grammars embedded in
an And-Or graph to represent large scale visual knowledge, using raster images as in-
put, for modeling and learning. In their preliminary works, they show that the gram-
mars enable them to parse images and construct descriptive models of images. This
allows the production of alternative artifacts and the learning of new models.

Byrne et al. [2012] evolved architectural models using grammatical evolution. Gram-
matical evolution is a grammar based form of Genetic Programming (GP), replacing
the parse-tree based structure of GP with a linear genome. It generates programs by
evolving an integer string to select rules from a user-defined grammar. The rule se-
lections build a derivation tree that represents a program. Any mutation or crossover
operators are applied to the linear genome instead of the tree itself. McDermott [2013]
also used grammatical evolution to evolve graph grammars in the context of evolution-
ary 3D design. Greenfield [2012] used GP to evolve controllers for drawing robots. The
author resorted to an assembly language where each statement is represented as a
triple. The programs assume the form of a tree.

Music, or more specifically composition as a creative process, has been another
common application for procedural representations. One of the first, if not the first,
evolutionary approaches to music composition resorts to a procedural representation.
Horner and Goldberg [1991] used Genetic Algorithm (GA) for evolving sequences of op-
erations that transform an initial note-sequence into a final desired sequence within a
certain number of steps. Putnam [1994] was one of the first to use GP for music gen-
eration purposes. He used the traditional GP tree-structures to interactively evolve
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Fig. 7. An example phenotype (image, on left) and the expression-based genotype (code that produced the
image, on right) [Machado et al. 2007]. c©Machado et al. Reproduced by permission.

Fig. 8. Examples of non-deterministic grammar, their corresponding tree-like shapes, and their graph rep-
resentation [Machado et al. 2010]. c©Machado et al. Reproduced by permission.

sounds. Spector and Alpern [1994] used GP to evolve programs that transform an in-
put melody by applying several transformation functions (e.g., invert, augment and
transpose). The work of Johanson and Poli [1998] constitutes another early applica-
tion of GP in the music domain. Hornel and Ragg [1996] evolved the weights of neural
networks that perform harmonization of melodies in different musical styles. McCor-
mack [1996] explored stochastic methods for music composition and proposed evolving
the transition probability matrix for Markov models. Monmarché et al. [2007] used
artificial ants to build a melody according to transition probabilities while also taking
advantage of the collective behavior of the ants marking paths with pheromones. They
evolved graph like structures, the vertices are MIDI events and a melody corresponds
to a path through several vertices. McCormack [1996] focused on grammar based ap-
proaches for music composition, exploring the use of L-systems. In an earlier work,
McCormack [1993] used L-systems for evolving 3D shapes.

6. APPLICATION-SPECIFIC REPRESENTATIONS
In the above sections, we introduced conceptual representations at each of the sym-
bolic, spatial and connectionist levels, as well as both descriptive and procedural rep-
resentations. The representations reviewed so far are domain-generic. In this section,
we review conceptual representations that have been used in three popular applica-
tions domains of computational creativity research: language, music and images. In
addition we review representations of emotion, an important factor for artifacts in all
these domains, and therefore interesting for computational creativity. The informa-
tion in these four domains may have representations at all the three levels and both
descriptive and procedural representations.

6.1. Language
In the language domain, one of the atomic conceptual representations is word. A sin-
gle word is ambiguous. Word cluster and fuzzy synset are representations aimed at
expressing meanings more precisely. Word association is association (see Section 2.1)
between words, which is the building block of a more complex representation, word
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association graph. The above are conceptual representations used in a broad range of
language-related tasks. In addition, we review two conceptual representations used in
narrative generation, plan operator and narratological category.

6.1.1. Word, Word Cluster and Fuzzy Synset. Natural language is typically used to re-
fer to a concept, which can be denoted by a word. Traditionally, words are collected
in dictionaries. Broad-coverage lexical knowledge bases (LKBs) are computational re-
sources. WordNet [Fellbaum 1998; Miller et al. 1990] is a manually constructed LKB,
designed with the inspiration of current psycholinguistic theories of human lexical
memory. The most ambitious feature of WordNet is its attempt to organize lexical in-
formation in terms of word meanings, rather than word forms. English nouns, verbs,
adjectives and adverbs are organized into synonym sets (synsets), each representing
one underlying lexical concept (word sense). Another prominent feature of WordNet
is that synsets are linked by conceptual-semantic and lexical relations, such as syn-
onymy, antonymy, hypernymy, hyponymy, holonymy, meronymy, attribute, cause and
domain. LKBs have been very popular in text-based creative systems, such as poetry
generation [Gonçalo Oliveira 2012; Agirrezabal et al. 2013], narrative [Gervás 2009;
Riedl and Young 2010], computational humor [Ritchie 2001], etc.

As natural language is ambiguous, in opposition to formal languages, one word is
often not sufficient for referring to a specific concept. Whether with explicit or implicit
relations, a group of words is a common alternative for describing a concept. A no-
table resource of word clusters is Roget’s Thesaurus [Roget 1992], where semantically
related words and phrases are organized in groups led by head words. Most of the
computational work on harvesting word clusters relies on Harris’ [1968] distributional
hypothesis, which assumes that similar words tend to occur in similar contexts. After
defining the contexts of words, these works generally follow a procedure of clustering
words according to their distributional similarity (see Section 3.2).

A special case of word cluster is synset. New synonyms can be discovered from raw
text using semantic relatedness measures (see Section 6.1.2). Apart from raw text,
synonyms can be extracted from dictionaries [Gonçalo Oliveira and Gomes 2013], es-
pecially from definitions having only one word or using the “same as” pattern.

Furthermore, from a linguistic point of view, word senses are not discrete and cannot
be separated with clear boundaries [Kilgarriff 1996; Hirst 2004]. This has some paral-
lelism with the psychological notion of categorical perception (see Section 1.2). Sense
division in dictionaries and ontologies is thus often artificial. This also applies to con-
cepts, and representing them as crisp objects does not reflect the way humans organize
knowledge. A more realistic approach would be adopting models of uncertainty, such as
fuzzy logic. Velldal [2005] represents word sense classes as fuzzy clusters, where each
word has an associated membership degree. Other works represent concepts as fuzzy
synsets. The fuzzy membership of a word in a synset can be interpreted as the confi-
dence level of using this word to indicate the meaning of the synset. In the Swedish
WordNet [Borin and Forsberg 2010], words have fuzzy memberships to synsets, based
on the opinion of users on the degree of synonymy of synonym pairs. Fuzzy synsets
were automatically discovered in synonym networks extracted from Portuguese dictio-
naries [Gonçalo Oliveira and Gomes 2011] and from the redundancy across different
lexical-semantic resources [Gonçalo Oliveira and Santos 2016].

6.1.2. Word Association, Word Association Graph. Word association is a pair of words that
are related in some way. Word associations have been collected in psychological ex-
periments, where a word (stimulus) is presented to a person who is asked to say or
write down the word that first comes to his mind. For instance, some of the most fre-
quent responses to the stimulus word “apple” are: “pie”, “pear”, “orange”, “tree” and
“core”. The responses are in various relations with the stimulus, such as synonymy,
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antonymy, meronymy, hierarchic relations (category-exemplar, exemplar-category and
category coordinates), idiomatic and functional relations [Cruse 1986]. There exist two
large collections of word associations, the Edinburgh Associative Thesaurus (EAT)12

and the University of South Florida Free Association Norms13.
The computational work on harvesting word associations is closely related to cal-

culating semantic relatedness/similarity. In general, semantic relatedness/similarity
is measured by using distance measures in certain materialized conceptual space,
mainly knowledge bases (KBs) and raw text. KBs include dictionary, thesaurus and
ontologies, which are represented as graphs or networks. Hence, the semantic related-
ness measures using KBs are path related calculations. With raw text, there are mea-
sures based on the frequency of word co-occurrence, such as log-likelihood ratio [Dun-
ning 1993], Pointwise Mutual Information and Information Retrieval (PMI-IR) [Tur-
ney 2001], Normalized Google Distance (NGD) [Cilibrasi and Vitanyi 2007], and VSMs
(see Section 3.2).

Words can be connected according to their associations, which becomes a graph. In
this graph, a word, or the concept it denotes, is defined by the connections it has with
other words, e.g., “car” is defined by its associations to “drive”, “road”, “vehicle”, “traf-
fic”, “personal”, etc.

Word associations and word association graphs have broad usage in NLP tasks, such
as word sense disambiguation [Navigli 2009]. In the computational creativity field,
Toivanen et al. [2014] used document specific word associations in poetry generation.
PMI scores computed on Wikipedia are used to evaluate the semantic proximity of
automatically generated song lyrics to their seeds [Gonçalo Oliveira 2015]. Xiao et al.
[2016] used word associations in building a metaphor interpreter. Word association
graphs were used to solve Remote Associate Test [Gross et al. 2012]. Nevertheless, not
much work has been done for creating novel concepts by exploiting the structures of
word association graphs, which is a promising direction for future research.

6.1.3. Plan Operator. A different type of concept (related to the implementation of nar-
rative systems as well as the much broader field of planning [LaValle 2004]) are actions
as operators that change the world. In the field of planning, such actions are defined
as plan operators. Actions in a story are applicable if certain conditions hold in the
state of the world before they happen, and after they happen they change the state of
the world. This idea has been represented by defining actions with an associated set of
preconditions and another set of postconditions or effects. Table II shows examples of
story actions linked by preconditions.

Specific planners [Fikes and Nilsson 1971; Pednault 1987] may represent planning
operators in different ways. Attempts have been made to standardize AI planning lan-
guages, with the Planning Domain Definition Language (PDDL) [McDermott et al.
1998] being a significant reference in this effort. The problem of constructing plan
operators for specific applications is an open research question, with ongoing efforts
considering constructing them as a composition of general components [Clark et al.
1996]. Concept creation technologies could be applied in this case with considerable
advantage.

6.1.4. Narratological Category. A more elaborate concept associated with language is
that of a narratological category. These arise within the expanding area of research
called computational narratology, which involves computational representation and
treatment of the fundamental ingredients of narratives. This type of representation
would be an important stepping-stone towards achieving automatic processing of nar-

12http://www.eat.rl.ac.uk.
13http://w3.usf.edu/FreeAssociation/.
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Table II. Examples of Story Actions

Character function villainy liquidation

Preconditions villain X
prisoner Y
hero H

Action kidnap X Y releases H Y

Postconditions victim Y
prisoner Y

rative, and it is an integral part of ongoing efforts for the automatic generation of nar-
rative [Kybartas and Bidarra 2017]. Existing efforts to represent fundamental ingre-
dients of narratives have been based on analyses of narrative ingredients by literary
scholars, and they have led to various proposals of their computational representa-
tions. Of the many theories of narrative developed in the Humanities, only a few have
bridged the gap to become tools in the hands of AI researchers. Propp’s [1968] Morphol-
ogy of the Folktale is one of these, having been applied in several AI systems for story
generation. The two corner stones of Propp’s analysis of Russian folktales are a set of
character roles (which the author refers to as dramatis personae) and a set of char-
acter functions (acts of characters). These have been used in several systems [Turner
1993; Grasbon and Braun 2001; Fairclough and Cunningham 2004; Gervás et al. 2005;
Wama and Nakatsu 2008; Imabuchi and Ogata 2012], represented in slightly different
ways. Of all these, the most explicit conceptual representation of Propp’s set of narra-
tological categories is the description logic formulation developed by Peinado [2008].

Another popular narrative theory in the computing community is the three-act
restorative structure, though at a different level of detail from Propp’s. This model,
derived from Joseph Campbell’s [1968] analysis of the structure of myths, is a domi-
nant formula for structuring narrative in commercial cinema [Vogler 1998].

Another source that is also being considered in AI is the work of Chatman [1978].
This model constitutes a step up from the models of Propp and Campbell in the sense
that it considers a wider range of media, from literature to film. For an AI researcher in
search of a model, the greatest advantage of Chatman’s approach is his effort to iden-
tify a common core of elementary artifacts involved in several approaches to narrative
theory. Chatman studied the distinction between story and discourse, and proposed
ways of decomposing each of these domains into elementary units. His idea of struc-
turing story and discourse in terms of nuclei and attached satellites provides a way of
organising internally the knowledge entities on which computational systems rely for
representing stories.

Furthermore, there is ongoing research on automatically learning the equivalent
of Propp’s morphology from a set of annotated texts [Finlayson 2012]. This process
involves the automatic creation of character functions. It is achieved by Analogical
Story Merging (ASM), a novel machine learning technique which provides computa-
tional purchase on the problem of identifying a set of plot patterns from a given set of
stories. Propp’s manner of abstracting narrative structure from a set of stories is far
from being the only possible one. Concept creation technologies should consider possi-
ble alternative abstractions which might be automatically generated from a corpus of
sample stories.

6.2. Music
Honing [1993] notes that representations for music tend to be motivated either to
address predominantly technical issues, or to capture more perceptual or cognitively-
salient musical qualities. The former category emphasizes observable and measurable
musical attributes, such as the velocity of key presses on a piano keyboard, the position
of note symbols on a musical score, or the propagation of sound waves during a musical
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performance. The latter category seeks to capture the cognitive aspects of musical
thought and behavior—the concepts that predominate when listening to, performing,
composing, or otherwise engaging in music.

In an early discussion of the application of computer technology to music research,
Babbitt [1965] employs the terms acoustic, graphemic and auditory to distinguish
three related domains of musical information. The acoustic domain encompasses the
physical manifestations of music as sound. Representations of auditory information
include analogue recordings on electromagnetic tape, or streams of binary digits re-
sulting from analogue-to-digital conversion. The representation of acoustic informa-
tion most naturally falls within Honing’s category of technical representations.

The graphemic domain pertains to the graphical notation of music, such as conven-
tional musical scores and tablature. Graphical notations are themselves representa-
tions, serving primarily as musical aide-mémoires and means of communicating mu-
sical ideas. From the computational perspective, there is scope for both technical and
cognitive representational approaches. For example, where the aim is simply to repre-
sent the exact layout of notation symbols on a score, a purely technical representation
is adequate. However, if the aim is to also represent associated music-theoretical mean-
ing, or possible performance interpretations, then the representation language must
necessarily express, at least in part, the musical knowledge assumed by each notation
system. Such information could also be described declaratively or procedurally. For
example, a representation could describe a trill declaratively as an object of ornamen-
tation, or alternatively, as a procedure representing how a trill is produced [Honing
1993].

The auditory domain covers information about music as perceived by the listener,
aligning with Honing’s category of conceptual and mental representations. The char-
acterization of musical information into the domains of the acoustic, graphemic, and
auditory is not exhaustive; for example, gestures made by performers would be an-
other potentially relevant domain of information [Selfridge-Field 1997]. However, the
distinctions are nonetheless important categories of musical information. The phe-
nomenon of music itself cannot be said to exist in any one domain exclusively, but
instead can be understood as something that exists between the domains, with each
one offering a particular perspective from which to study music [Wiggins 2008], mak-
ing music a rich and challenging area of application within the field of knowledge
representation.

A simple, yet powerful approach to a general representation of music is proposed by
Wiggins et al. [1989], Harris et al. [1991], and Smaill et al. [1993]. The Common Hi-
erarchical Abstract Representation for Music (Charm) aims to support a high degree
of generality, enabling interoperability and extensibility. Charm is defined initially as
a representation of music at the symbolic level, in which readily identifiable musical
objects are represented by discrete symbols. As such, Charm is particularly appropri-
ate for representing a wide range of graphemic information, but can also be extended
to represent lower-level acoustic or other continuously-valued musical information.
Furthermore, symbolic representations are particularly appropriate for the high-level
description of a range of perceptual attributes and concepts, such as discrete musical
events, groupings of events, and for expressing the formal properties of relationships
between such structures.

Charm is based on the computer science concept of abstract data typing. Despite the
direct incompatibility of many music representation schemes, a considerable degree of
commonality exists at an abstract level. For example, most schemes define some way of
representing pitch, whether in terms of MIDI note numbers, scale degree, microtonal
divisions of the octave, or frequency. However, at an abstract level, common patterns of
operations can be observed, which are irrespective of the underlying implementation.
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Therefore, the authors proposed an abstract representation, in which musically mean-
ingful operations can be defined in terms of abstract data types. Harris et al. [1991]
defined basic data types for pitch (and pitch interval), time (and duration), amplitude
(and relative amplitude) and timbre. Therefore, the abstract event representation is
the Cartesian product:

Pitch × Time ×Duration ×Amplitude × Timbre

In the case of time, the following functions can be defined where the arguments {t, d}
denote Time or Duration data types respectively.

adddd : Duration×Duration→ Duration
addtd : Time×Duration→ Time
subtt : Time× Time→ Duration
subdd : Duration×Duration→ Duration

(1)

Typed equivalents of arithmetic relational operators (e.g., ≤,≥, =, 6=) are also defined,
permitting ordering and equality relations to be determined. With the exception of
timbre, the internal structure of each basic data type is the same, allowing comparable
functions to be defined modulo renaming [Harris et al. 1991].

The abstract data type approach to representing music extends beyond the represen-
tation of surface level events. Charm formally defines the concept of the constituent,
which allows arbitrary hierarchical structures to be specified [Harris et al. 1991]. At
the abstract level, a constituent is defined as the tuple:

〈Properties/Definition,Particles〉
Particles is a set whose elements, called particles, are either events or other con-
stituents. No constituent can be a particle of itself, defining a structure of constituents
as a directed acyclic graph. Properties/Definition is the “logical specification of the rela-
tionship between the particles of this constituent in terms of the membership of some
class” [Harris et al. 1991]. The distinction between Properties and Definition is made
explicit in a concrete implementation. However, at the abstract level, they both logi-
cally describe the structure of the constituent. Properties refer to “propositions which
are derivably true of a constituent” [Harris et al. 1991]; for example, that no particle
starts between the beginning and end of any other particle, defined as a stream:

stream ⇔ ∀p1 ∈ particles,¬∃p2 ∈ particles,
pi 6= p2 ∧
GetT ime(p1) ≤ GetT ime(p2) ∧
GetT ime(p2) < addtd(GetT ime(p1),GetDuration(p1))

(2)

where GetTime and GetDuration are selector functions returning the timepoint and
duration respectively of a given particle. Definitions are propositions that are true by
definition; for example, that a set of particles contains all the events notated in a score
of a particular piece of music.

An implementation of a Charm-compliant representation requires some additional
properties, both for computational efficiency and user convenience. The following is an
example of a simple ‘motif ’ constituent [Smaill et al. 1993]:

constituent(c0, stream(0, t1), motif, [e1, e2, e3, e4])

Every event and constituent defined within the system must be associated with a
unique identifier, shown as c0, e1, e2 and so forth in the above example. The con-
stituent is a stream, with a start time and a duration, denoted by the property
stream(0, t1), which is derivably true from the events it contains. In contrast, the
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constituent is defined as a motif, and the user is free to provide such definitions for
their own purposes.

A wider benefit of adopting an abstract data type approach to music representation
is that it provides the basis for developing a common platform for sharing data and
software tools. Smaill et al. [1993] demonstrate that both the implementation language
and concrete data representation are immaterial providing that the correct behavior
of the abstract data types is observed. From a formal perspective, many issues of rep-
resentation discussed in the field can be seen as concerning merely arbitrary matters
of encoding or data serialization. Although encoding schemes may well be designed to
meet particular needs, such as to facilitate efficient human data entry or to be space
efficient, ambiguity can arise when implicit ontological commitments are left unstated,
ultimately limiting potential usefulness.

6.3. Image
Images are commonly represented on computers by matrices of pixels. For instance,
one byte can be used to encode the color value for each pixel, or three bytes per pixel
in RGB images.

den Heijer and Eiben [2011] used Genetic Algorithms (GAs) to evolve Scalable Vector
Graphics (SVGs), manipulating directly SVG files through a set of specifically designed
mutation and recombination operators. In a more recent approach, den Heijer [2013]
manipulates directly BMP, GIF, PNG and JPG files to produce glitch art effects.

We consider parametric representations as a particular type of descriptive repre-
sentation where the representation encodes a set of parameters that determine the
behavior of a generative system. The work of Draves [2007] is a prototypical example
of such an approach, where the genotype encodes the parameter set of fractal flames,
i.e. a set of up to several hundred floating-point numbers. In the words of Draves:

“The language is intended to be abstract, expressive, and robust. Abstract
means that the codes are small relative to the images. Expressive means
that a variety of images can be drawn. And robust means that useful codes
are easy to find.”

Other recent examples include the work of Reed [2013] who evolved a Bézier curve
that is then rotated around an axis to create a vase. The representation consists of five
coordinates and three integers, which determine the angles within the curve. Machado
and Amaro [2013] used a string of floating-point numbers to encode and evolve a set
of parameters that specify the sensory organs and behavior of artificial ants, who are
used to create non-photorealistic renderings of input images.

6.4. Emotion
In recent times, emotion has become a focus of interest in computational applications.
Among various conceptual representations of emotions [Cowie and Cornelius 2003],
the most popular two are emotional categories and emotional dimensions. Connection-
ist representations of emotions also exist, such as [Norton et al. 2010]. We describe the
two most common representations below.

Emotional Categories: Natural languages provide assorted words with varying de-
grees of expressiveness for describing emotional states. Several approaches have been
proposed to reduce the number of words used to identify emotions, such as basic emo-
tions, super-ordinate emotional categories, and essential everyday emotion terms. Basic
emotions refer to those that are more well-known and understandable to everybody
than others [Cowie and Cornelius 2003]. In the super-ordinate emotional categories,
some emotional categories are proposed as more fundamental, with the argument that
they subsume the others [Scherer 1984]. Finally, the essential everyday emotion terms
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focus on emotional words that play an important role in everyday life [Cowie et al.
1999].

Emotional Dimensions: These spatial representations model the essential aspects of
emotions numerically. They deal with artificially imposed scales of identified charac-
teristics of emotions. Although there are different dimensional models with different
dimensions and numerical scales [Fontaine et al. 2007], most of them agree on three
basic dimensions called evaluation, activation and power [Osgood et al. 1957].

— Evaluation represents how positive or negative an emotion is. At one extreme, we
have emotions such as happiness, satisfaction and hope, while at the other we find
emotions such as unhappiness, dissatisfaction and despair.

— Activation represents an activity versus passivity scale of emotions, with emotions
such as excitation at one extreme, and emotions such as calmness and relaxation at
the other end.

— Power represents the sense of control the emotion exerts on the subject. At one
end of the scale we have emotions that are completely controlled, such as fear and
submission, and at the other end we find emotions such as dominance and contempt.
Emotional dimensions describe a continuous space as opposed to the discrete space
of emotional categories.

There exist collections of evaluation ratings estimated by computational methods,
called affect lexicons, such as General Inquirer14, WordNet-AFFECT [Strapparava and
Valitutti 2004], SentiWordNet [Esuli and Sebastiani 2006; Baccianella et al. 2010],
Macquarie Semantic Orientation Lexicon (MSOL) [Mohammad et al. 2009], and Sen-
ticNet15.

7. CONCLUSION
We have structured this review according to three levels of representation (symbolic,
spatial, connectionist), inspired by Gärdenfors [2000], and separately considered addi-
tional procedural representations and domain-specific representations in four popular
application areas of computational creativity (language, music, image and emotion).
We hope that this organization will act as a map, helping researchers navigate in the
forest of conceptual representations used in computational concept creation.

In the Introduction, we also gave a taxonomy of concept creation approaches, where
the main classes of methods are concept extraction, concept induction, concept recy-
cling, and concept space exploration. We next summarize the results of this review by
considering relations between the different levels of conceptual representations, the
application domains, and the types of concept creation methods.

Consider the application domains first. Above in Section 6 we considered represen-
tations in four major application domains of concept creation—language, music, image
and emotion. In addition to the domain-specific concept representations, the generic
representations of Sections 2–5 can also be used in these domains. Domain-generic
representations are especially useful in applications that process information from
multiple domains. It actually turns out that in all the domains that we have con-
sidered, conceptual representations have been used from all the levels and categories
used to structure this review (symbolic, spatial, connectionist; declarative, procedural).

Take for instance text documents. At the symbolic level, a document as a sequence of
words is ready for people to read. At the spatial level, documents are routinely repre-
sented as vectors, allowing e.g., comparison of semantic similarity between documents.

14http://www.wjh.harvard.edu/∼inquirer/.
15http://sentic.net.
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Table III. Concept creation methods applied at different levels and types of conceptual rep-
resentations

Level/type of representation Concept creation method
Extraction Induction Recycling Exploration

Symbolic level X X X X
Spatial level X X
Connectionist level X X X
Descriptive X X X X
Procedural X X X X

At the connectionist level, text can be generated by activating an artificial neural net-
work which captures characteristics of a collection of documents. The connectionist
representation is a procedural one, while the spatial and symbolic representations
used in the example are declarative ones.

In Table III we summarize, based on the above review, how concept creation methods
relate to the different levels and types of conceptual representations. Two interesting
observations can be made. First, concept extraction has mainly been applied at one of
the three levels only, the symbolic level, between different symbolic representations.
This is for an obvious reason: symbolic representations are often designed to be manip-
ulated and translated, and at the very least, by definition, have meanings that can be
processed as symbols. Spatial and especially connectionist representations lend them
much less for such translation, if at all. According to Gärdenfors, the three levels are
connected, so that the connectionist level feeds spatial representations, which in turn
become symbolic in language. In the same way, it seems plausible that concept ex-
traction methods operating between levels could be developed. For instance, McGregor
et al. [2015] take steps towards establishing such a mapping between spatial and sym-
bolic levels. The second observation is that concept induction, concept recycling and
concept space exploration have all been used for almost all the levels and types of con-
ceptual representations, with the exception that we are not aware of applications of
concept recycling to spatial representations. This seems a promising area for research
in concept creation: spatial representations lend themselves for mutation and combi-
nation, the question is more in how to utilise this capability in concept creation in a
useful way.

This review demonstrates that conceptual representations at each of the symbolic,
spatial and connectionist levels, as well as both descriptive and procedural represen-
tations, are abundant. Still, promising new representations are emerging at all levels,
such as bisociation (Section 2.1), heterogeneous information network (Section 2.5), con-
ceptual spaces (Section 3.1), neural blackboard (Section 4.1), and deep neural network
(Section 4.3).

Furthermore, numerous avenues exist for research into computational concept cre-
ation and conceptual representations, we here mention some of them. For instance, in
the field of concept extraction, an interesting possibility for future work is automati-
cally building plan operators. Concerning concept induction, a particularly interesting
line of future work is learning new narratological categories. In terms of concept re-
cycling, the combination of thematically different ontologies can be a new approach
for dealing with analogies, metaphors, pataphors and conceptual blending. Regarding
concept space exploration, an interesting opportunity is discovering novel concepts in
word association graphs by exploiting graph structure measures. Finally, with respect
to transformational creativity, finding new interpretations of familiar concepts in a
conceptual space model would offer ways to be creative beyond the original limits.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



Conceptual Representations for Computational Concept Creation A:33

REFERENCES
Agnar Aamodt and Enric Plaza. 1994. Case-Based Reasoning: Foundational Issues, Methodological Varia-

tions, and System Approaches. AI communications 7, 1 (1994), 39–59.
Moshe Abeles. 2011. Cell Assemblies. Scholarpedia 6(7) (2011), 1505.
Lada A. Adamic and Eytan Adar. 2003. Friends and Neighbors on the Web. Social Networks 25, 3 (2003),

211–230.
Eugene Agichtein and Luis Gravano. 2000. Snowball: Extracting Relations from Large Plain-Text Collec-

tions. In Proceedings of the Fifth ACM Conference on Digital Libraries (DL ’00). San Antonio, TX, 85–94.
Manex Agirrezabal, Bertol Arrieta, Aitzol Astigarraga, and Mans Hulden. 2013. POS-Tag Based Poetry

Generation with WordNet. In Proceedings of the Fourteenth European Workshop on Natural Language
Generation (ENLG ’13). Sofia, Bulgaria, 162–166.

Janet Aisbett and Greg Gibbon. 2001. A General Formulation of Conceptual Spaces as a Meso Level Repre-
sentation. Artificial Intelligence 133, 1–2 (2001), 189–232.

Ahmed F. AlEroud and George Karabatis. 2013. A System for Cyber Attack Detection Using Contextual
Semantics. In Proceedings of the Seventh International Conference on Knowledge Management in Orga-
nizations: Service and Cloud Computing. 431–442.

Milton Babbitt. 1965. The Use of Computers in Musicological Research. Perspectives of New Music 3, 2
(1965), 74–83.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. 2010. SentiWordNet 3.0: An Enhanced Lexical
Resource for Sentiment Analysis and Opinion Mining. In Proceedings of the Seventh Conference on
International Language Resources and Evaluation (LREC ’10). Valletta, Malta.

Shumeet Baluja, Dean Pomerleau, and Todd Jochem. 1994. Towards Automated Artificial Evolution for
Computer-Generated Images. Connection Science 6 (1994), 325–354.
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