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1 The Regression-based Document Influence Model

The regression-based document influence model (RDIM) developed for this work
is a dynamic topic model (DTM) that extends the document influence model (DIM)
[6, 16]. DTMs are themselves an extension of the static, latent Dirichlet allocation
topic model (LDA; [9]). These models share a statistical pedigree in probabilistic
graphical models, which specify dependence relationships among observed and la-
tent variables. All topic models assume a set of latent term-distributions, referred
to as “topics”, and are responsible for observed term co-occurrences across docu-
ments [5]. In RDIM, there are only two sets of observed variables: the occurrence
of terms in documents, and a vector of covariates for each document. Latent vari-
ables are fit by expectation maximization (EM), which iterates between updating
model parameters given the data, and computing the expectation of the data give
the desired parameters [23]. We define RDIM in more detail in Section 1.1, explain
the approximate inference in Section 1.2, and derive the E- and M-step updates for
variables that differ from DIM in Section 1.3.

1.1 Definition

RDIM learns the influence of documents in a time-ordered collection of text. Here,
we adopt a technical definition of influence: how much a document changes future
discourse. This discourse is represented as a set of topics {1, · · · ,K}, which con-
stitute probability distributions over terms [9, 13]. Dynamic topic models derive
a set of such topics from documents binned into time-steps {1, · · · , T}, that drift
with Gaussian noise but which are also guided by variation in the preceding doc-
uments. This variation consists of words wd ∈ N , their topic-assignments zd, and
the influence, `d,k, of previous documents.1

While DTMs allow topics to change, they do not provide a measure of how the
change takes place. The dynamic influence model [16, DIM] learns a document’s
influence based on how its linguistic variation is reflected in future topics. This is
carried out using a latent vector over topics for influence, `d, which, along with wd
and zd, is used to learn topics in the next time-slice, βk,t+1. Our model, RDIM, is

1The subscripts d, t, and k pick out a document, time-stamp and topic respectively. However, d
and t are redundant because each document d has a single time-stamp t. We omit t where time is not
relevant to the interpretation of a variable. In all cases `t,d,k = `d,k and τd,k = τt,d,k.
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specifically designed to measure exogenous factors that shape discursive influence
such as authorship, publication venue and other document metadata. RDIM oper-
ationalizes a robust notion of topic-specific influence as the mixture of content (as
in DIM) and the results of a latent regression on document covariates, which are
specific to each topic.

Denote the influence of document d as `t,d, which we take to be informed by a
regression on a vector of S observed document-level covariates, denoted by τt,d. To
incorporate a latent regression on these covariates, we assume influence is drawn
from a Gaussian, the mean of which is given by a projection on τt,d:

`t,d ∼ N (µτt,d, σ
2
` I) (1)

where µ is a K × S matrix of topic-specific coefficients. Furthermore, we assume
µ is drawn from a Gaussian of mean 0 and specified variance:

µk ∼ N (0, σ2µI) (2)

Figure 1 illustrates the plate diagram for RDIM. In RDIM, the generative process
for each time-slice t, is assumed to be

1. Draw topics βt+1|βt, (w, `, z)t,1:Dt
∼ N (βt+exp(−βt)

∑
d `t,d

∑
n wt,d,nzt,d,n, σ

2I).
2. Draw coefficients µk ∼ N (0, σ2

µI).
3. For each document d at time t:

(a) Draw θt,d ∼ Dir(α).
(b) For each word wt,d,n

i. Draw zt,d,n ∼ Mult(θt,d).
ii. Draw wt,d,n ∼ Mult(π(βt,zt,d,n)).

(c) Draw `t,d ∼ N (µτt,d, σ
2
` I)

where the function π(x), used in the word draws, maps the multinomial parameters
to their mean: π(x)w = exp(xw)∑

w exp(xw) .
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Figure 1: Plate diagram for RDIM, shown with three time-slices. Note that docu-
ment influence, `t,d, is a product of the document metadata in τt,d and topic-specific
coefficients, µk. Influence is then learned by observing its effect on topics of sub-
sequent time-steps, β{t+1,··· ,T},k.

1.2 Approximate Inference

Similar to DTM and DIM, RDIM aligns topics using draws from a Gaussian:

βt+1,k|βt,k, (w, `, z)t,1:Dt ∼

N (βt,k + exp(− βt,k)
Dt∑
d=1

`t,d,k

Nt,d∑
n=1

wt,d,nzt,d,n, σ
2I) (3)

This introduces non-conjugacy between the log-normal prior topic mixtures, β,
and the multinomial word observations, w, however, precluding collapsed Gibbs
sampling or traditional EM. RDIM uses variational inference based on Kalman fil-
tering [19], which estimates the variational parameters to minimize the KL diver-
gence to the true posterior. In variational inference, the topic alignment parameters
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are a Gaussian chain, {β1,k, · · · , βT,k}, governed by the variational parameters
{β̂1,k, · · · , β̂T,k} that describe the mean of each distribution.

The addition of τ does not change this distribution, but µ does. RDIM learns
µ by variational estimation to the approximate µ̂. This means topics fit with DTM,
DIM, and RDIM will be different. Intuitively, this is because future topics have been
“influenced” by the covariates apparent in τ . We assume the variational distribution
for influence is given by the Gaussian of the mean influence and a fixed variance:

`t,d ∼ N (ˆ̀
t,d, ν

2
` I) (4)

We also assume the variational distribution for µ is drawn from a Gaussian with
mean µ̂k and fixed variance:

µk ∼ N (µ̂k, ν
2
µI) (5)

For the variational distributions of other parameters, we follow the assumptions
in DIM [16]:

βt ∼ N (β̂1:t, σ̂
2I) (6)

θt,d ∼ Dir(γt,d) (7)

zt,d,n ∼ Mult(φt,d,n) (8)

This defines the variational distribution as

q(β,`, θ, z, µ|β̂, ˆ̀, γ, φ, µ̂) =
∏
k

q(β1,k, · · · , βT,k|β̂1,k, · · · , β̂T,k) (9)

×
∏
k

q(µk|µ̂k)×
T∏
t=1

( Dt∏
d=1

q(θt,d|γt,d)q(`t,d|ˆ̀t,d)
Nt,d∏
n=1

q(zt,d,n|φt,d,n)
)

RDIM is fit by variational expectation maximization (EM) described in Al-
gorithm 1, and here we focus on the updates of parameter ˆ̀ and µ̂. We define
X = Diag(exp(−βt,k))(wt ◦ zt,k), and ∆βt,k = βt+1,k − βt,k. With S covariates,
τt,d is an S-length vector and τt is an S×D matrix coding the observed covariates
of D documents. µ is a K × S matrix, containing the coefficients for each each
covariate. The lower bound of ˆ̀

t,k is given by:

Lˆ̀
t,k

=
1

σ2
Eq[XT∆βt,k]ˆ̀t,k −

1

2σ2
Eq[XTX]ˆ̀2t,k −

1

2σ2d
(ˆ̀
t,k − µ̂kτt)2 (10)

This provides the E-step update for ˆ̀
t,k:

ˆ̀
t,k ← (Eq[XTX] +

σ2

σ2d
I)−1(Eq[XT∆βt,k] + µ̂kτt) (11)
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Algorithm 1 EM inference in RDIM

1: for i iterations do
2: for Time t do
3: for Document d ∈ t do
4: for Token n ∈ d do
5: Update φt,d,n,k
6: end for
7: Update γt,d,k
8: end for
9: Update ˆ̀

t,k by Eq. 11
10: end for
11: for Time t do
12: for Topic k do
13: Update β̂t,k
14: end for
15: end for
16: Update µ̂ by Eq. 13
17: end for

Similarly, the lower-bound of µ is given by

Lµk =
∑
t

∑
d

∑
k

− 1

2σ2`
(ˆ̀
t,d,k − µ̂kτt,d)2 −

∑
k

µ̂2k
2σ2µ

(12)

This yields the M-step update for µk:

µ̂Tk ←

(∑
t

∑
d

τt,dτ
T
t,d +

σ2`
σ2µ

I

)−1∑
t

∑
d

τt,d ˆ̀
t,d,k (13)

The update for ˆ̀
t,k by Eq. 11 is similar to DIM and relatively straightforward.

An extra term µ̂kτt is added to the second term of Eq. 11 to model the influence
from the covariates. However, updating µ̂ by Eq. 13 can be difficult because, al-
though it is entirely observed, the first term is a large, dense and potentially degen-
erate S×S matrix. Numerical and memory considerations rule out direct inversion.
Instead, we use a high-performance solver that accommodates general matrices and
provides bounds on any numerical error in the solutions.2 The model’s complexity,
primarily due to the K-updates for µ̂ and ˆ̀, is overcome by reducing the number
of φ-updates in early iterations (prior to which the topic-chains remain unaligned)

2PARDISO; www.pardiso-project.org
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and with local multi-threading, pipelining and a distributed memory solver. Our
implementation of RDIM is available online.3

1.3 Derivation

This section derives the E- and M-step updates for influence ` (as it differs from
DIM) and the coefficients, µ, for the document-level covariates τt,d.

Following the model assumptions in Sections 1.1 and 1.2, we obtain the vari-
ational distribution (Eq. 9). Now we can write out the evidence lower bound
L(β̂, ˆ̀, γ, φ, µ̂;α) and factorize it as

L(β̂,ˆ̀, γ, φ, µ̂;α)

= Eq[log p(w, z, θ, `, µ, β;α)]− Eq[log q(β, `, µ, θ, z|β̂, ˆ̀, µ̂, γ, φ)] (14)

=
∑
k

∑
t

Eq[log p(βt+1,k|βt,k, (w, `, z)t,1:Dt)] (15)

+
∑
t

∑
d

Eq[log p(θt,d|αt)] (16)

+
∑
t

∑
d

Eq[log p(`t,d|µ)] (17)

+
∑
t

∑
d

∑
n

Eq[log p(zt,d,n|θt,d)] (18)

+
∑
t

∑
d

∑
n

Eq[log p(wt,d,n|βt,zt,d,n)] (19)

−
∑
t

∑
k

Eq[log(βk,t|β̂k,1:T )] (20)

−
∑
t

∑
d

Eq[log q(θt,d|γt,d)] (21)

−
∑
t

∑
d

Eq[log q(`t,d|ˆ̀t,d)] (22)

−
∑
t

∑
d

∑
n

Eq[log q(zt,d,n|φt,d,n)] (23)

+
∑
k

Eq[log p(µk)] (24)

−
∑
k

Eq[log q(µk|µ̂k)] (25)

3https://github.com/gerowam/influence.git
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Updating Influence ` Three terms (Eqs. 15, 17 and 22) are related to the influ-
ence parameter `. Eq. 15 and can be expanded as∑

t

∑
k

Eq[log p(βt+1,k|βt,k, (w, `, z)t,1:Dt)] (26)

= −V TK
2

(log 2π + log σ2)

− 1

2σ2

∑
t

∑
k

∑
v

Eq[(βt+1,k,v − βt,k,v − exp (−βt,k,v)(wt,v ◦ zt,v,k)`t,k)2]

= −V TK
2

(log 2π + log σ2)

− 1

2σ2

∑
t

∑
k

∑
v

Eq[(βt+1,k,v − βt,k,v)2]

+
1

σ2

∑
t

∑
k

∑
v

Eq[(βt+1,k,v − βt,k,v) exp (−βt,k,v)(wt,v ◦ zt,v,k)`t,k]

− 1

2σ2

∑
t

∑
k

∑
v

Eq[exp (−2βt,k,v)((wt,v ◦ zt,v,k)`t,k)2]

where wt,v is a Dt-dimensional vector with each entry as the frequency of word
type v in document d.Dt is the number of documents at time t; zt,v,k is a Dt-
dimensional vector, where each entry is 1 if the topic is k otherwise 0; `t,k is also a
Dt-dimensional vector, where each entry is the influence of document d with time-
stamp t on topic k. V is the vocabulary size; T is the number of time intervals; and
K is the number of topics.

Similarly, we know τt,d is an S-dimensional vector, and we use τt to denote an
S × Dt matrix; µ̂ is a K × S matrix and we use µ̂k to denote the S-dimensional
vector for topic k. Eq. 17 can be expanded as∑

t

∑
d

Eq[log p(`t,d|µ)] (27)

=
∑
t

∑
d

∑
k

Eq[−
1

2σ2`
(`t,d,k − µkτt,d)2 −

1

2
(log 2π + log σ2` )]

=
∑
t

∑
d

∑
k

− 1

2σ2`
((ˆ̀

t,d,k − µ̂kτt,d)2 + ν2` )− 1

2
(log 2π + log σ2` )

=
∑
t

∑
k

− 1

2σ2`
((ˆ̀

t,k − µ̂kτt)2 + ν2` )− 1

2
(log 2π + log σ2` )
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Eq. 22 can be expanded as

Eq[log q(`t,d,k|ˆ̀t,d,k)] = Eq[−
1

2
log 2π − log σl −

(`t,d,k − ˆ̀
t,d,k)

2

2σ2l
] (28)

= −1

2
log 2π − log σl −

ν2`
2σ2l

Combining the three expanded terms, we obtain the evidence lower bound for
influence ˆ̀

t,k:

Lˆ̀
t,k

=
1

σ2
Eq[(βt+1,k − βt,k) exp (−βt,k)(wt ◦ zt,k)`t,k] (29)

− 1

2σ2
Eq[exp (−2βt,k)((wt ◦ zt,k)`t,k)2]−

1

2σ2`
(ˆ̀
t,k − µ̂kτt)2

We define X = Diag(exp(−βt,k))(wt ◦ zt,k), and ∆βt,k = βt+1,k − βt,k. As a
result, we have

Lˆ̀
t,k

=
1

σ2
Eq[XT∆βt,k]`t,k −

1

2σ2
Eq[XTX]ˆ̀2t,k −

1

2σ2`
(ˆ̀
t,k − µ̂kτt)2 (30)

We take the derivative of the evidence lower bound with respect to ˆ̀
t,k, and gener-

ate

∂Lˆ̀
t,k

∂ ˆ̀
t,k

=
1

σ2
Eq[XT∆βt,k]−

1

σ2
Eq[XTX]ˆ̀t,k −

1

σ2`

ˆ̀
t,k +

1

σ2`
µ̂kτt (31)

Setting the derivative to zero, we obtain

1

σ2
Eq[XT∆βt,k]−

1

σ2
Eq[XTX]ˆ̀t,k −

1

σ2`

ˆ̀
t,k +

1

σ2`
µ̂kτt = 0 (32)

→ (Eq[XTX] +
σ2

σ2`
I)ˆ̀

t,k = Eq[XT∆βt,k] + µ̂kτt (33)

This provides the E-step update for influence:

ˆ̀
t,k ← (Eq[XTX] +

σ2

σ2`
I)−1(Eq[XT∆βt,k] + µ̂kτt) (34)

where Eq[XT∆βt,k] and Eq[XTX] can be computed the same as in DIM [16].
Eq[XT∆βt,k] is a Dt dimensional vector with each element as:∑

n

(wt,d,nφt,d,n,k)(m̂t+1,k,n − m̂t,k,n + Σ̂t,k,n/2) exp(−m̂t,k,n + Σ̂t,k,n/2)

(35)
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where m̂ and Σ̂ are the mean and variance of the variational posterior for β̂. These
two parameters are estimated using standard Kalman filter calculations (see [6]).
Eq[XTX] is a Dt ×Dt matrix with each element as∑

n

exp(−2m̂t,k,n + 2Σ̂t,k,n)(wt,d,nwt,d′,nφt,d,n,kφt,d′,n,k) (36)

when d 6= d′. For d = d′, the element is

Eq[XTX]d,d =
∑
n

exp(−2m̂t,k,n + 2Σ̂t,k,n)(w2
t,d,nφt,d,n,k) (37)

Updating Coefficients µ Three terms (Eqs. 17, 24 and 25) in the model are
related to the evidence lower bound for µ, and these three terms can be expanded
as follows, respectively:

Eq. 17:∑
t

∑
d

Eq[log p(`t,d)]

=
∑
t

∑
d

∑
k

Eq[−
1

2σ2`
(`t,d,k − µkτt,d)2 −

1

2
(log 2π + log σ2` )]

=
∑
t

∑
d

∑
k

(
− 1

2σ2`
(ˆ̀
t,d,k − µ̂kτt,d)2 + ν2` −

1

2
(log 2π + log σ2` )

)
(38)

Eq. 24:∑
k

Eq[log p(µk)] =
∑
k

∑
s

Eq[−
1

2σ2µ
µ2k,s −

1

2
(log 2π + log σ2µ)]

=
∑
k

∑
s

(
− 1

2σ2µ
(µ̂2k,s + ν2µ)− 1

2
(log 2π + log σ2µ)

)
(39)

Eq. 25:

−
∑
k

Eq[log q(µk|µ̂k)] = −
∑
k

∑
s

Eq[
1

2
log 2π − log σµ −

(µk,s − µ̂k,s)2

2σ2µ
]

=
∑
k

∑
s

(
− 1

2
log 2π − log σµ −

ν2µ
2σ2µ

)
(40)
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which, together, give us the lower-bound of µk:

Lµk =
∑
t

∑
d

∑
k

− 1

2σ2`
(ˆ̀
t,d,k − µ̂kτt,d)2 −

∑
k

∑
s

µ̂2k,s
2σ2µ

=
∑
t

∑
d

∑
k

− 1

2σ2`
(ˆ̀
t,d,k − µ̂kτt,d)2 −

∑
k

µ̂2k
2σ2µ

(41)

Taking the derivative with respect to µk, we have

∂Lµk
∂µk

=
∑
t

∑
d

− 1

σ2`
(ˆ̀
t,d,k − µ̂kτt,d)(−τt,d)−

µ̂k
σ2µ

(42)

=
∑
t

∑
d

1

σ2`
τt,d(ˆ̀

t,d,k − µ̂kτt,d)−
µ̂k
σ2µ

(43)

which, when set to zero yields the update for µ̂k:

µ̂Tk ←

(∑
t

∑
d

τt,dτ
T
t,d +

σ2`
σ2µ

I

)−1∑
t

∑
d

τt,d ˆ̀
t,d,k (44)

1.4 Modeling Framework: Assumptions & Limitations

Like all topic models, RDIM is generative in that it treats observations as the out-
come of an underlying process. This process is defined with a graph of dependence
relationships between observed and latent variables (Figure 1). The generative as-
sumption allows for the inference process, but it also imposes constraints on the
data. The primary assumption in topic models is that documents, which consist
of tokens, tend to be produced by topics, responsible for the constituent term co-
occurrence patterns. The intuition is straight-forward: documents tend to be about
something, which dictates what words are used. A second assumption, specific to
DTMs, is that a time-ordered “diachronic” collection has a consistent set of topics
throughout. This is no small assumption, and some work has sought to relieve
it [2, 12]. As we will see, however, in growing collections of scientific research
(ACL-ARC, APS and JSTOR datasets) the emergence of topics can indeed be seen
over the course of the data. This is typically observed as early years which have
vague or “background” topics, which individuate over time, becoming increasingly
coherent and specific. In some ways, the constant-K assumption is helpful because
it forces the model to establish the genesis of a topic. This assumption further high-
lights the importance of choosing an optimalK for a given dataset. We address this
by measuring topic usage in static models fit with many topics and sparse hyper-
priors, which approximates a Bayesian nonparametric search over possible values
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of K. A third assumption, made by DIM and RDIM in particular, is that documents
contribute change to future topics. In RDIM this influence is adjusted by extrin-
sic, document-level features coded in the metadata, τd. We implement this as a
projection of the covariates on a linear space, enabling estimation of their marginal
effects. A final assumption made by nearly all statistical analyses is the ability for a
sample to represent a population. Some of our claims are generalizable to research
as a whole, and where they are not, it has more to do with limitations of data than
the modeling framework. Our two primary datasets, the APS and JSTOR corpora,
offer some of the largest digitized collections of published research, but they are
by no means exhaustive. Neither give adequate coverage to orally presented re-
search. JSTOR contains books and monograms, which were more popular earlier
in the collection. However the APS dataset contains only peer-reviewed journal
publications. These aspects of the data mediate our conclusions, but do not violate
assumptions of the modeling framework: documents still exhibit systematic varia-
tion in term co-occurrence, the force of influence over time and a significant role
of covariates. As such, attributing discursive influence to documents in different
temporal regions of the corpus does not change their interpretation.

2 Evaluations

2.1 Quantitative Evaluation

Convergence Results of topic models can be difficult to qualify [13]. Here, we
assess the stability of RDIM and compare it to its simpler parent model, DIM,
using the Association for Computational Linguistics Anthology Reference Cor-
pus4 (ACL-ARC) [4]. The corpus contained 10,331 full-text articles, 43M tokens
(51,142 unique) over 24 years. The top 2,000 strongest bigram collocations, ex-
tracted using normalized PMI [30] were also included, and only terms occurring in
five or more documents, with a mean TF*IDF of 1.0E-5 were kept. This produced
a vocabulary of 23,104 unique tokens. Publication venue, authorship, length (in
pages) and number of authors were coded in τ .

In our analysis of model stability, we fit 10- 20- and 50-topic models to random
folds of the ACL-ARC. The folding procedure was performed over documents in
each time-slice Dt, which induces folds across N and τ . Following [6] and [16],
the model was initialized with a static LDA model fit to the entire corpus. We set
σµ=0.0001 and all other parameters to published defaults: σd=0.0001, σ`=0.0001,
α=0.01, and the chain variance for {βk,1, · · · , βk,T }, σ̂2 = 0.005. The conver-
gence criterion was met when the model lower bound changed less than 0.01%

4acl-arc.comp.nus.edu.sg
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Figure 2: A sample of coefficients in µ̂ during training (a; top left), the convergence
of ‖µ‖F (b; top right), held-out perplexity on 10, 70 / 30 folds of the ACL-ARC
using RDIM (c; bottom left) and DIM (d; bottom right). Error-bands are ±1 s.d. of
the mean.

from the previous iteration.
We compared our model to DIM, which does not estimate how document co-

variates contribute to influence. The held-out log-likelihood and perplexity were
computed for 10 random folds. We also assessed ‖µ̂‖F, the stabilization of which
signals convergence in the estimated coefficients. Our model exhibits similar con-
vergence behavior to its less complex counter-part (Figure 2c-d), where the 50-
topic models performed best. After 25 iterations, the final values for RDIM were
all within 1 s.d. of the mean compared to DIM. Looking at the coefficient ma-
trix, which is unique to RDIM, we demonstrate that ‖µ̂‖F tends to converge before
perplexity. Convergence in the norm of µ̂, however, does not necessarily imply
all coefficients converged. Although no coefficients exhibited super-linear trends,
a small number were numerically unstable (observed as oscillation): about 2 of
8,804 in each topic on average.
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K and Influence Applications of topic models and DTMs have been described,
verified and critiqued elsewhere in the literature [11]. However, our work relies
centrally on the interpretation of the latent influence variable, ˆ̀. Posterior esti-
mates for influence are affected by model specification and the choice forK. Table
1 shows the correlations of influence for models fit to the full ACL-ARC data with
varying number of topics. The greatest discrepancy is seen comparing a K = 1
model to a K = 100 model, where influence scores correlated at r = 0.26. Al-
though all model pairs are positively correlated and models closer in specification
are considerably more correlated, there continues to be significant variation. This
underscores the importance of choosing the number of topics in a principled, data-
driven fashion, as discussed in the following section.

K 1 2 5 10 20 50 75 100
1 1
2 .84 1
5 .72 .80 1

10 .56 .69 .80 1
20 .51 .63 .74 .76 1
50 .32 .42 .56 .60 .61 1
75 .30 .39 .51 .56 .56 .69 1

100 .26 .38 .47 .48 .51 .54 .58 1

Table 1: Pearson correlation between document influence (Eq. 8; main text) for
models with different numbers of topics. In all cases p < 0.01 and all differences
are significant (p < 0.01; Fisher’s z-transformation).

Influence and Missing Data Influence scores are also stable with respect to
missing data and random starting conditions. On ten folds of the ACL-ARC data,
randomly removing 20% of documents, the average correlation for influence (over
all pairs of folds) was r = .84 (K = 10), r = .83 (K = 20), r = .83 (K = 50) and
r = .83 (K=75) (all p < 0.01). On the same data, random initialization produced
approximately 4% variation in influence scores.

2.2 Influence in Computational Linguistics Research

Here, we justify the complexity of our model and demonstrate its usefulness, sur-
veying results from a 20-topic model fit to the ACL-ARC dataset described above.
We use the ACL-ARC to exemplify the forms of analysis enabled by RDIM, and
to compare simple uses of our model to its predecessors. The ACL-ARC data has
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been analyzed in a number of places (see [1] for a collection of analyses), often
with models fitted with more than 20 topics. For example, [3] fit 100 topics, la-
beled 73, grouped those into three-year temporal bins which were then clustered
before analyzing the publishing trajectories of academics. We are primarily inter-
ested in demonstrating the viability of influence as we conceive it and showing that
contextual features, uniquely captured by our model, are both sensible and use-
ful. Choosing the number of topics for our primary datasets, APS and JSTOR, is
discussed in Section 3.

Both DIM and RDIM produce topics and influence scores. The composition of
these topics is itself guided, in part, by influence. In DIM, because the conception
of influence is a simple scalar value, whereas in RDIM it is regressed on document
covariates, the topics themselves will be different. This relationship is grounded
in the generative assumptions: covariates affect how a document is created and
perceived, and the derived topics should reflect this. Influence, then, serves as an
explanatory trace of a document’s lasting impact. Expanding this explanation to
include the marginal effects of covariates enables RDIM not only to better explain
lasting influence, but also to provide better topics.

We examined estimated values in µ̂ to explore how document covariates effect
influence in the ACL-ARC. Recall that µ̂k,s is the marginal effect of parameter
s on ˆ̀

d,k (where s is a feature of d coded in τ ). In the ACL-ARC, authors tend
to be the largest contributors of extrinsic influence. Tables 2a-b show two topics,
Grammar & Parsing and Information Retrieval, and the covariates with the largest
marginal effect. In Parsing & Grammar, the top coefficients were for two linguists,
Gerald Gazdar and Robert Berwick, who developed theories of natural language
syntax influenced by computability constraints. Note that coefficients are topic-
specific: neither Gazdar nor Berwick were in the top coefficients for other topics.
In Information Retrieval, the strongest covariates include Donna Harman, who co-
authored authoritative datasets for TIPSTER conferences, and Gerard Salton, the
namesake of the “Salton Vector Space Model”.5 Despite comprising the top co-
efficients in all topics, the average author detracts from influence. Although the
median author coefficient was below zero in all topics, the distributions were still
skewed to the negative (γ1(µ̂k) > 0, p < 0.01 for all k; Pearson’s moment coeffi-
cient). That is, there are more positive outliers than negative, suggesting that there
is more room to be an outstanding author, with a positive reputation boosting in-
fluence for your opus, than a terrible author with a negative reputation that detracts
attention from it.

5Interestingly, Salton did not write an often-cited 1975 paper A Vector Space Model for Infor-
mation Retrieval [15]. Nonetheless, he is widely credited with pioneering research in vector space
models that emerged in the 1970s and were used in various information retrieval tasks.
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Parsing & Grammar Information Retrieval
tree document

grammar term
node query

structure text
feature topic

language retrieval
figure collection
form result

constituent information
set sentence

Parsing & Grammar Information Retrieval
Parameter Value in µ̂k Parameter Value in µ̂k

Gerald Gazdar 0.00013 Donna Harman 0.00017
Robert C. Berwick 0.00012 G. Vladutz 0.00014
Monique Rolbert 0.00012 Gerard Salton 0.00013
J. N. Verastegui-Carvajal 0.00011 Jade Goldstein 0.00012
C. Raymond Perrault 0.00001 Chris Buckley 0.00011
Jan Landsbergen 0.00009 David D. Lewis 0.00011
James Kilbury 0.00008 Tomek Strzalkowski 0.00010
Luis Damas 0.00008 K. L. Kwok 0.00009
R. C. Bainbridge 0.00008 John Broglio 0.00009
C. S. Mellish 0.00008 Andy Lauriston 0.00007

Table 2: Top words from the final time-step of two topics in the ACL-ARC (a;
top) and estimated covariate coefficients in µ̂k with the largest positive effect on
influence in these topics (b; bottom). In all 20 topics, authors comprised the ten
strongest effects on influence.

The venue in which a paper is published affects its reception. Nevertheless,
such an effect may not be uniform: certain venues may promote papers’ influence
in particular topics while inhibiting influence in others. Figure 3 shows the coeffi-
cients for publication venues in the ACL-ARC model. Topic #4, Information Ret-
rieval, shows a disproportionately positive effect for papers published in the (now
defunct) TIPSTER conferences. TIPSTER was a competition-based event spon-
sored by the U.S. NIST, alternatively referred to as the Text REtrieval Confer-
ence (TREC). The TIPSTER / TREC conferences focused on document retrieval
in different settings (libraries, email, web, newswire, etc.), it is logical that doc-
uments about information retrieval would receive a positive boost for being pub-
lished here, as opposed to elsewhere. Another positive outlier is seen in topic 16,
Entity Extraction, for papers published in Message Understanding conferences,
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Figure 3: Estimated coefficients in µ̂k for publication venue in the ACL-ARC data.
In most topics, values cluster near zero. Like authors, there are more positive
outliers than negative.

sponsored by the U.S. DARPA from 1987 to 1997. This conference focused on
extracting structured information from formal communications such as military re-
ports, terrorist communications and newswires. Publishing in these conferences
would increase the influence of papers on named entity, event extraction and other
entity recognition tasks. A third outlier is the effect of publishing in Human Lan-
guage Technology (HLT) conferences for topic 20, Speech Processing. Although
speech is important to many aspects of computational linguistics, HLT focuses
primarily on enabling language-based interaction between people and computers,
where speech is a central component.

2.2.1 Comparison to DIM

Our model assigned the highest posterior influence to the 1982 paper “From En-
glish to Logic: Context-Free Computation of ’Conventional’ Logical Translation”,
which was published in the American Journal of Computational Linguistics. This
paper, by Lenhart Schubert and Francis Pelletier, describes a class of context free
grammars that account for grammatical and logical structure in English. The paper
introduced concepts that are now main-stays of the wider field, such as induc-
tion, learning, inference, parsing and translation. Examining the paper’s metadata,
we found that Pelletier contributed a substantial boost to its influence, though it
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would still have been highly influential (by content alone) without his by-line. The
second most influential publication, “The Text REtrieval Conferences (TRECs)”,
which summarizes the TREC conference datasets, received a sizable boost from
its venue and authors. Compare this to the highest score given by DIM to the 1986
“Q&A: Already a Success?” a miniature precis on automated question answering
by Gary Hendrix.6 This paper offered the ACL community important vocabulary
on an emerging topic (mostly notably the bigram question answering). The second
most influential paper from the DIM model was a 1986 opinion piece by Harry Ten-
nant on the “The Commercial Application of Natural Language Interfaces”, which
introduced a menu-based linguistic interface developed by Texas Instruments. The
influence of both these papers comes from having introduced lexical variation that
later became common in particular topics. The primary difference in how RDIM

and DIM attribute this influence lies in the combination of internal / textual and
external / contextual contributions: whereas the top papers from DIM contribute
significant lexical variation, the CFGs and TREC papers given by RDIM brought
both formative content and had external boosts from eminent authors and well-
suited publication venues.

Explicitly modeling document metadata makes for a more complex model, but
it also provides a more accurate account of citations. In DIM, the maximum poste-
rior influence scores were found to correlate with citation counts [16]. Document
Influence in RDIM (Id; Eq. 8; main text) is the product of both content and meta-
data, and should be more strongly correlated to citations than in DIM. In a 10-topic
model on the ACL-ARC data, our Id correlated with citations at ρ = 0.28 and DIM

produced ρ = 0.22. For K = 20, the RDIM’s scores correlated at ρ = 0.27 and
0.21 for DIM. At K = 50, our model correlated with citations at 0.23 and DIM

again at 0.21. Finally, at K = 75 our model correlated at ρ = 0.22 and DIM at
ρ = 0.18 (all p < 0.01). This confirms that the contextual features captured by
RDIM have a significant, observable effect on predicting variation in citations.

3 Data & Model Specification

3.1 APS Collection

The APS collection contained 509,007 abstracts dating from 1913 to 2015. Doc-
uments were coded with their type (comment, essay, rapid, erratum, brief, miscel-
laneous, letter, article, reply or Nobel), venue (Physical Review, Physical Review
A, Physical Review B, Physical Review C, Physical Review D, Physical Review E,
Reviews of Modern Physics, Physical Review Special Topics, Physical Review Let-

6The paper, about a system called Q&A, is humorously presented as a Q&A.
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ters, or Physical Review X), authorship and author affiliation. Categorical covari-
ates were coded as indicators and centered to mean 0 and unit variance. Affiliations
can be a sensitive subject: the institutional resolution at which authors choose to
affiliate may be motivated by political, financial, or by expected perception. Au-
thors can choose to affiliate with their lab, department, school, division, institute,
university, etc.. We did not collapse affiliations into canonical institutions of any
level. Instead, to maintain a principled sample and avoid spurious metadata (redun-
dancies, misspellings, ambiguities), papers were removed if they did not have an
author and affiliation that occurred twice in the corpus. This filtering process helps
avoid certain issues with the data, particularly when analyzing author and affilia-
tion effects. The process resulted in a similar distribution across publication venues
in the sample compared to the full collection. The resulting set contained 251,382
documents, dating from 1918 to 2015 with 74,459 covariates coded in τ . In those
documents, open-class words7 were kept if they occurred in five or more docu-
ments. We also included the 5,000 strongest bigram collocations (also occurring
in five or more documents) [30]. Unigrams and bigrams with a mean TF*IDF less
than or equal to 1.0E-5 were removed. The final vocabulary consisted of 15,312 to-
kens (13,833 unigrams and 1,479 bigrams). This vocabulary size was data-driven,
filtered by frequency, collocation strength and TF*IDF scores, but it was also af-
firmed by three professional researchers with doctoral degrees in physics. We fit
a model with K = 37 topics; other parameters were the same as the ACL-ARC
models. The model was run on a tightly-coupled computing cluster and converged
after 26 iterations. Across all topics, we identified 8,103 (0.3%) coefficients were
oscillating beyond a tolerance of ±0.00001 per iteration. These coefficients were
discarded without further analysis. The derived dataset is available by contacting
the authors.

We chose to fit the APS data with 37 topics. This specification was selected by
fitting a static model which is less intensive than RDIM. A 500-topic LDA [9] was
fit with sparse hyper-parameters (αk = 1/K and βw = 10/N ).8 This configuration
estimates the Bayesian non-parametric solution [25, 26] and induces sparsity in
words’ topic assignments, zn,k, yielding a measure of topic use. This usage is
observed by a low proportion of documents having more than a certain number
of tokens. Specifically, for each of the 500 topics, we calculated the proportion
of documents that had 10 or more assigned tokens. To select a threshold above
which a topic is considered sufficiently “used”, we minimize the density estimate
of the topic usage distribution for scores above the mean (Figure 4). For APS, the

7Open-class refers to words that have a part-of-speech class to which new words can be added.
For example, a new noun can be added to a lexicon because nouns are an open class. The lexicon
tends not to accommodate new function words like determiners, articles, pronouns, etc..

8N being the number of tokens in the vocabulary.
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Figure 4: Topic usage distribution for APS (left) and JSTOR (right) static models.
The topic usage distribution in static 500-topic models of each dataset, was used to
calculated a threshold above which topics were sufficiently “used”. This was done
by minimizing the derivative (green dashed line) of the KDE (blue line) above the
mean. The thresholds are denoted with a vertical dashed red line.

threshold was the 463rd most used topic, yielding an estimate of K = 37 topics.
We also computed a number of post-hoc topic diagnostics9 on static models fit
to the data with different numbers of topics. The results of these—available by
request from the authors—showed that K = 37 for the APS data constituted a
compromise between coherent, consistent and individuated topics.

Using K = 37 for the APS also provides a cognitively manageable set of
topics, offering space for canonical physics subjects. 37 topics were few enough
that the topics could be labeled by physicists with experience in a variety of sub-
disciplines. Some research has used models with many topics to provide detailed
semantic analyses [17, 18], assist machine translation [10, 22], or to examine varia-
tion across collections [27, 36]. Our goal was not to uncover new topics in physics,
nor to provide detailed explanations of sub-fields, but to offer a measure of schol-
arly influence that is sensitive to the overarching organization of physics. In our
model, there were two topics that did not directly relate to sub-disciplines. The
first was a generalist topic, Academic Reporting, with prominent words like find,
show and calculate. Such a topic is not uncommon in models of academic text
[7, 31, 32]. Nonetheless, we exclude this topic from consideration when com-
puting document influence and other metrics. The second generalist topic was
more specific to physics, labeled Experimentation, with prominent words such as
experiment, construct and setup. This topic was retained because, though not a
sub-discipline, per se, experimentation is a unique aspect to physics research.

9See mallet.cs.umass.edu/diagnostics.php.
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APS topics were mainly related to sub-disciplines of physics, many of which
emerged relatively late in the dataset. This data spans nearly 100 years, during
which new concepts emerged in the literature, some of which go on to be impor-
tant in various topics. Each topic chain can be thought of as tracing the origin of
the topic’s eventual composition—much like how evolution lacks a destination, but
has trajectory all the same. Figure 5 illustrates the number of words assigned to
each topic, |zk| over time. This is effectively the prevalence of topics in each year
of the data. We omit the omnipresent, generalist topic Academic Reporting (topic
#36). Note how most topics emerge between 1950 and 1980. We also assessed
year-to-year divergence for each topic and found it correlated with growth. Be-
cause such yearly divergence is a macroscopic, distributional effect, which means
that attributing periods of change to specific documents would be an over-reach.
Instead, the topic contribution metric described in the main text (Eq. 10) provides
an egocentric view of what future variation is attributable to a given document.

19
20

19
40

19
60

19
80

20
00

Solid State Physics 37
HEP (Theory) 35

Molecular Dynamics 34
Waves 33

Network Science 32
Experimentation 31

Statistical Mechanics 30
Lasers 29

Cosmology (Dark Matter) 28
Plasma Physics 27

Quantum Computing 26
Materials  25

Fluid Dynamics 24
Detectors 23

Accelerator Physics 22
Lattice Quantum Chromodynamics 21

Dynamical Systems 20
Quantum Measurement 19

Critical Phenomena 18
Numerical Simulation 17

Scattering 16
Photonics 15

Superconductors 14
Atomic Physics 13

Spintronics 12
Quantum Field Theory 11

CMP (Phase Transitions) 10
Optics 9

Entanglement 8
Cosmology (String Theory) 7

HEP (Experimental) 6
CMP (Hall Effect) 5

CMP (Low Dimensional) 4
CMP (Materials) 3

HEP (Standard Model) 2
Mathematics & Analysis 1

Words Assigned to APS Topics

Figure 5: Heatmap of the number of words assigned to each topic over the course
of the APS collection. Darker cells indicate more words.
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3.2 JSTOR Collection

The JSTOR collection initially contained 2,205,970 full-text documents in 2,549
journals across 66 different disciplines from 1894 to 2014; more recent research
is under-represented in JSTOR. Disciplines in JSTOR are attributed by curators,
specified for each journal and organized into nine “domains” (Area Studies, Arts,
Business & Economics, History, Humanities, Law, Medicine & Applied Health,
Science & Mathematics, and Social Science). Documents were excluded if they
did not contain at least one author who wrote at least three documents, or they
were classified in a subject that had a gap exceeding 20 years (e.g. Railroad Sci-
ence). Of the remaining documents, we were able to use a random, 50% sample.
This document-wise sampling was performed per-year, not over the whole collec-
tion, resulting in a year-document distribution similar to the full collection. The
vocabulary was extracted similarly to the APS collection except that only unigram
tokens were included, non-English words were excluded and fewer tokens were
discarded by lowering the TF*IDF threshold. The resulting vocabulary consisted
of 20,155 tokens. The final dataset included 428,034 full text articles with meta-
data for 28,861 variables coded in τ , representing authorship, publication venue,
publisher and discipline.

The sampled collection had a similar composition to the full collection in terms
of domain (Figure 6). The biggest relative discrepancy was in Medicine and Allied
Health, which comprises 5.9% in the full collection but only 1.2% in the sample.
This is because many disciplines within this domain are recent additions to JSTOR
and have not yet been contiguously indexed for 20 or more years. Pruning terms in
JSTOR, as with APS, was carried out in a data-driven manner to reduce semanti-
cally uninteresting words by frequency and TF*IDF. While our approach is typical
in topic modeling and other NLP tasks, we expanded the vocabulary to over 20k—
near the advised upper limit for topic models [13, 8]—because JSTOR is such a
diverse corpus. Term pruning, can result in removing documents if they contain no
words after the filtering, but this only occurred 11 times in JSTOR.

A 53-topic model was fit with parameters similar to the APS data. The choice
of 53 topics was made using the same process as APS (See Figure 4). Nearly all of
the topics exhibited a clear subject, and we used Google Scholar searches of high
loading terms to confirm that the fields of the journals in which they were common
were stable. Three of the resulting topics were indiscernible, generalist topics,
each labeled Academic Verbiage. These topics were relatively static throughout
the corpus, but were not excluded because influence scores were so low (owing
to topic stasis) that they contributed little to calculations of document influence
and other model-based metrics. The JSTOR data was also submitted to the same
diagnostic regime as APS: static models were fit using different numbers of topics.
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Figure 6: Composition of the full JSTOR collection (top) and the sample used in
our dataset (bottom).

The diagnostics, as well as the three generalist topics, suggest that 53 is close
to the upper limit while remaining labelable and individuated. Results of these
diagnostics are available upon request.

Topic emergence in JSTOR is perhaps more interesting than in physics. JS-
TOR represents a wider range of academic research and while some areas were
permanent throughout, others emerged over the course of the data. The number of
words assigned to each topic for each year of the JSTOR collection is shown in
Figure 7. Many topics are well-represented throughout, such as Literary Theory
and, Plant Biology. Dips in the word-topic assignments (for all topics) correlate
with the two world wars. While some topics exhibit a permanence, some do not.
One example, explored more in Section 4.2, is the Environmental Science topic,
which swells in the 1960s.
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of the JSTOR collection. Darker cells indicate more words.
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4 Supplemental Results

4.1 APS Topics

Like DTMs, the results of these models provide insight into topic and term dynam-
ics over time. A good example in the APS data is the HEP (Theory) topic, which,
like other topics, emerged from a relatively general composition in the early years,
into a more discernible, specific topic. This emergence can be tracked by looking at
various terms’ likelihood in yearly topics (Figure 8a). Top words in HEP (Theory)
over time are shown in Table 3. Indeed, standard model, a concept that has domi-
nated HEP theory in recent years, did not approach the top of the distribution until
the late 80s. With regards to topics, individual terms can be used as probes. For
example, the concept of a quark emerged primarily in HEP (Theory) and later in
HEP (Standard Model) and the experimental side HEP, Accelerator Physics. To-
gether, these three topics dominate assignments of quark to all others (Figure 8b).
These term and topic dynamics are a result of DTMs, but it is important to remem-
ber that topic composition is guided by influence, itself a combination of metadata,
words, and topic assignments. Therefore, topics represent a model-aware source
of influence, uniquely captured by RDIM.
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Figure 8: Likelihood of six key terms in the HEP (Theory) topic over the course
of the APS corpus (a; left). Likelihood of topic-assignment given the term quark
throughout the APS data (b; right). Here, the term quark is likely to be drawn from
one of only three topics.

As a process, science is often characterized by bifurcation and consolidation
[21]. Given the expanding volume and breadth of science, it is difficult to ex-
emplify consolidation processes aside from certain specific examples.10 Bifur-
cation, on the other hand, is not only common, but observable at larger scales.

10See plato.stanford.edu/entries/scientific-reduction for a philosophical
discussion, particularly on supervenience in Section 4.5.3.
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1920 1930 1940 1950 1960 1970 1975 1980 1985
mass mass mass meson mass mass model mass mass

doublet rule meson mass meson model mass model model
rule coupling coupling coupling coupling current coupling quark quark

coupling doublet rule nucleon nucleon coupling rule coupling coupling
sum meson heavy interaction interaction rule current meson symmetry

heavy heavy constant rule constant meson quark symmetry boson
neutral sum interaction constant coupling_constant sum meson rule meson
meson neutral nucleon coupling_constant rule trajectory sum weak rule

constant constant sum sum vector sum_rule symmetry current constant
exception interaction neutral neutral sum regge weak sum coupling_constant
interaction exception doublet scalar relation symmetry sum_rule boson breaking

pole diagram exception vector symmetry relation constant decay sum
diagram nucleon intermediate heavy model pole coupling_constant constant baryon

color pole coupling_constant relation weak amplitude decay coupling_constant chiral
intermediate intermediate vector weak decay constant vector gauge decay

nucleon sum_rule sum_rule strong strong coupling_constant interaction sum_rule gauge
sum_rule color particle intermediate scalar vector relation interaction sum_rule
particle relation relation discussed pole decay hadron hadron current
relation particle scalar assumption current baryon regge breaking nucleon
vector vector pole one also interaction also also weak

1990 1995 2000 2005 2010 2011 2012 2013 2014
mass mass mass mass mass mass mass mass mass
model model model quark gauge gauge gauge gauge gauge

coupling quark quark symmetry symmetry symmetry standard higgs higgs
quark coupling coupling coupling quark higgs symmetry boson boson
boson boson symmetry model coupling coupling higgs standard symmetry

symmetry symmetry boson chiral higgs quark boson symmetry standard
meson meson chiral boson chiral standard coupling coupling coupling

rule chiral breaking breaking boson boson quark quark quark
breaking higgs meson higgs breaking chiral chiral chiral chiral

higgs heavy heavy gauge standard breaking breaking breaking breaking
coupling_constant breaking higgs meson value value value value value

constant rule gauge heavy scale scale scale scale scale
chiral gauge rule scale model model standard_model standard_model standard_model
sum sum baryon baryon meson standard_model model model model

gauge constant find rule theory decay decay decay decay
baryon coupling_constant scale value decay theory flavor flavor lattice

find correction value sum flavor flavor theory lattice flavor
sum_rule find sum light heavy meson heavy higgs_boson higgs_boson

scalar baryon parameter find standard_model heavy lattice theory heavy
parameter parameter constant symmetry_breaking baryon scalar meson heavy effective

Table 3: Top words in HEP (Theory) throughout the APS collection.

Even though the number of topics is held constant over time in our models, some
topics exhibit specialization as they shift from their initial general state. The
Quantum Computing topic exemplifies this process (Table 4). Early in the cor-
pus, its broad focus on semiconductors and electricity is clear, but beginning in
the 1960s, terms like tunneling, transport and barrier make their way to top. By
the turn of the century, concepts like edging effects, and the role of surfaces and
interfaces emerge. In the final years, quantum, dot and even device are among
the most likely words. Device is particularly important because it signals that re-
search is beginning to look at engineering in addition to explaining natural phe-
nomena. Comparing Quantum Computing to other quantum-related topics such as
Superconductors or Lattice Quantum Chromodynamics, it begins to individuate in
the 1960s. Both of these other topics began in similar ways to Quantum Computing,
but diverged midway through the dataset.
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1920 1930 1940 1950 1960 1970 1980 1990 1995 2000
current current surface current surface surface layer interface tunneling tunneling

potential surface current surface current metal current layer interface interface
voltage potential potential charge metal current interface tunneling layer layer
surface voltage voltage potential charge tunneling tunneling barrier barrier current
charge metal layer voltage electron electron barrier electron electron barrier
metal electrode metal metal voltage layer surface current conductance electron

electrode charge charge layer layer junction electron conductance current conductance
wire layer wire electron potential barrier junction voltage step transport
layer wire electrode wire barrier voltage metal step voltage step

electron electron electron region region effect step transport transport microscopy
contact contact function contact contact bulk transport junction wire wire
cobalt function contact function effect charge effect structure microscopy scanning

function cobalt difference electrode normal contact voltage effect edge voltage
difference difference cobalt barrier junction normal contact image scanning junction
connected height height height wire region height resistance junction edge

height observed observed normal tunneling interface region contact structure image
vacuum collector region effect density density observed observed image contact
collector normal barrier carrier carrier observed normal oscillation effect scanning_tunneling
applied vacuum normal cobalt electrode potential tunnel wire contact bias

observed applied carrier observed height height thickness thickness oscillation effect

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
current current current current current current current current current current

tunneling tunneling tunneling tunneling tunneling tunneling tunneling tunneling tunneling tunneling
interface transport transport transport transport transport transport transport transport transport
transport interface interface interface conductance conductance interface interface interface interface

conductance conductance conductance conductance interface interface conductance conductance conductance conductance
electron electron electron voltage voltage voltage voltage scanning layer layer
barrier junction junction junction junction junction scanning dot quantum quantum

junction voltage voltage electron electron electron junction device scanning scanning
voltage barrier wire wire wire scanning electron layer electron electron

wire wire barrier barrier barrier wire wire electron wire edge
contact bias bias bias bias barrier device wire dot wire

bias contact contact scanning scanning bias barrier voltage effect effect
microscopy scanning scanning contact contact contact contact junction voltage contact

scanning microscopy microscopy microscopy device device dot contact edge voltage
layer layer device device microscopy microscopy bias barrier junction junction
effect effect layer layer layer layer layer bias contact device

scanning_tunneling device effect effect effect effect microscopy quantum bias dot
device charge charge charge charge charge effect edge charge charge
charge scanning_tunneling scanning_tunneling scanning_tunneling scanning_tunneling scanning_tunneling charge microscopy barrier barrier
image image image image edge dot quantum charge device bias

Table 4: Top words in Quantum Computing throughout the APS collection.

4.2 JSTOR Topics

Our JSTOR collection contains a wide range of academic writing. Among the 53
topics were three that consisted of terms relating primarily to academic writing.
Throughout the collection, these Academic Verbiage topics were typified by terms
like example, show, question and work. Topics of this kind are common in text
collections from a given domain [13]. The lexical first-mover effect discussed in
the main text is observable in these topics, despite their stability over time. Figure
9 plots the yearly average influence in each topic and the mean over all topics. Note
the period of generally high influence in the first ten years. The first documents in
our sample appear to shape the future more than others because they are simply the
first ones to use most terms. This “burn-in” period is unavoidable without access
to the entirety of written work. As such, the first twelve years of JSTOR (1913 to
1930) were discarded from document-specific analyses.
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Figure 9: Mean estimated influence over documents in each year of the JSTOR
corpus: 1

|Dt|
∑

t
ˆ̀
d,t.

Table 5 shows the top words for the Environmental Science topic in JSTOR.
This topic is typical of topics that emerged part way through the corpus. In the
early years, the topic is concerned primarily with natural resources, specifically
water, oil and gas. In the 1960s, the terms temperature and treatment rise to the
top. This is the period during which the topic became considerably more prominent
in documents (Figure 7). While some topics were used consistently throughout the
corpus, many are like Environmental Science in that their rise in usage is matched
by coincidental rises in specific terms—often marking a conceptual shift, in this
case a focus on climate change.
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1920 1930 1940 1950 1960 1965 1970 1975
used water water plant plant water plant plant
water used used water water plant water water
use supply plant used used temperature temperature temperature

supply foot use per temperature used used rate
air use air air condition soil surface leaf

work inch supply use per surface rate soil
gas plant hour condition weight condition soil used

made pipe flow supply treatment weight condition weight
pressure flow material material content day weight surface

inch capacity made made surface rate table condition
plant gallon gas amount made treatment day value
pipe tank work flow day content treatment treatment
well made time time amount table leaf table
iron thompson condition high air air content content

capacity work tank content soil leaf air high
main air capacity temperature period high value dry
flow filter pressure period high low high low
foot gas operation treatment leaf study growth level

condition pressure per method material growth dry day
per condition amount ing rate seed low growth

1980 1985 1990 1995 2000 2005 2010 2014
water water rate rate rate rate rate rate
plant rate water water fig per per per

temperature temperature temperature table per fig increase increase
rate plant treatment temperature water increase ratio low
soil treatment table per increase low low use

treatment soil soil fig low ratio fig ratio
energy weight low treatment table density mass mass
content low high low temperature value value value

level table weight increase density higher higher higher
weight high area high value condition condition fig
high content increased increased ratio measured density condition
low level per value higher increased measured measured
used dry content soil increased water use nutrient
value plot level higher measured table increased potential

condition area increase measured condition mass nutrient density
table used dry content high nutrient system increased

surface condition value condition treatment maximum maximum system
dry value condition density depth decrease data loss

range production higher area composition depth loss data
study range used ratio lower system respectively using

Table 5: Top words, p(w|z), in Environmental Science throughout the JSTOR col-
lection. Like many topics in JSTOR, it exhibits a conceptual transition part way
through the corpus: here from natural resources to a more specific focus on the
environment.
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4.3 Relative Effect of Covariates

By explicitly modeling covariates’ effect on influence, RDIM provides insight into
the composition of influence. The proportion of intrinsic influence (influence with-
out the covariate effects; ˆ̀

d,k−
∑

s∈τd µ̂k,s) and the extrinsic influence (total effect
of covariates;

∑
s∈τd µ̂k,s) can be used to assess the proportion of influence at-

tributable to metadata. Figure 10 show the proportional effect of covariates on
influence for APS and JSTOR. Positive values indicate covariates’ net effect added
influence to documents in a topic, whereas negative values mean covariates de-
creased influence. In both collections there is a range of proportional effects across
topics, though all means were within ±15% of the total influence.
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Figure 10: Proportion of influence from covariates in each topic of the APS corpus
(top) and the JSTOR corpus (bottom).
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4.4 Author Affiliations

The APS collection contained 26,948 distinct institutions. Of these, the institution
with the greatest marginal effect on influence was the The Physical Laboratory at
Cornell University, which was in the top percentile of six topics. The institution
with the second highest marginal effect over all topics was Bell Telephone Labs,
which dates back to 1925, when it pioneered work on information theory and com-
putation, publishing much of Claude Shannon’s work, inventing the transistor as
well as developing UNIX and the C programming language. The third and fourth
strongest institutional name-sakes were Nankai University—a top-ranked Chinese
university in Tianjin—and the Institut fur Theoretische Physik at the University of
Vienna, once chaired by Erwin Schrödinger.

4.5 Authors

47,482 authors were coded in the APS data. The most influential authors, mea-
sured as their sum influence over topics,

∑
k µ̂k,s=author are all authors of early

papers that introduce key terms which later came to define topics. The authors in-
clude William Duane—a Harvard physicist, student of Max Planck and colleague
of Marie Curie—who was awarded the Comstock Prize in Physics (1923) for the
production of radon in the lab. Duane tops other authors in influence, in part, be-
cause he used the term absorption four times in the abstract of a 1919 paper, a term
later prominent in Optics and other topics. The next most influential name-sake
was William Swann—who used the term vector potential in 1920. Other notable
authors among those with exceptionally influential documents are Edwin Hall of
the Hall Effect and Raymond Birge who lead Berkeley’s Physics Department and
hired Robert Oppenheimer.

4.6 Publication Venue

There were 11 venues coded in the APS data, 8 of which have been published for
20 or more years. To explore the effect of publication venue on document influ-
ence, venue coefficients were examined. There is considerable clustering in most
topics, suggesting that often, there is no particular journal that boosts influence.
However, there were certain topical trends consistent with the publishing mandate
of APS journals (Figure 11a). For example, Physical Review D, which publishes
work in HEP, cosmology, field theory, and particle physics, stands above other out-
lets in topics related to high energy and cosmological physics. This implies that
“correct placement” of a paper in Physical Review D provides the document with
more influence than had it been published elsewhere. Across all topics, the highest
extrinsic boost to influence comes in the Academic Reporting topic—which is a
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broad topic regarding scholarly reporting. The venues that provided the most addi-
tional influence here were Physical Review (the original APS journal) and Reviews
of Modern Physics. Neither venue has a subject-specific mandate and both contain
research relevant to the greater physics community.

Physical Review E, which has the broadest remit in terms of subject matter,
gives a sizable boost to Network Science, Fluid Dynamics and Dynamical Systems.
Papers here range from complex systems, to chemical and biological physics, ma-
terials science, plasma and information theory. Papers in P.R.E. tend to be more
influential than those in other subject-mandated journals (P.R. A-D; Figure 11b).
This may be due to the journal’s breadth: whereas venues like Reviews of Mod-
ern Physics provide a sizable extrinsic boost to many topics, and specific journals
like P.R.D do well in topics related to their mandate, papers in P.R.E have more
available areas to influence, which increases their sum influence across all topics.
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Figure 11: Coefficients for APS publication venues for each topic (a; top) and the
distribution of influence for documents published in each journal (b; bottom). Also
shown in (b) are journals’ Impact Factor (I.F.) and Eigenfactor (E.F.), two measures
of journal quality. Only journals published 20 or more years are shown.
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4.7 Citation Patterns & Influence

Citations are very much the currency of scientific impact as they act like a proxy for
what communities find important. Citation patterns have been analyzed in a num-
ber of places [24, 33, 34], but typical analyses treat them as observed outcomes.
The increased visibility of citation metrics (for institutions, journals, authors and
individual papers) has led to a bias for citing highly cited papers [35]. Document
influence provides a content-driven measure of lasting impact compared to the per-
ceived impact of citation counts. Recall that citations were not coded in τ for the
APS or JSTOR models, allowing comparison to document influence. An impor-
tant question is whether citations exhibit similar behavior as influence. Figure 12
illustrates a three-dimensional plot of a paper’s document influence vs. the mean
influence of the documents the paper cites and that of the documents that cite it.
First, note the positive skew for cited papers’ influence. This implies that, over-
all, people tend to cite papers of higher-than-average influence. Second, papers
with high influence tend to land in quadrant A, papers that cite are cited influential
papers. This confirms the guiding intuition behind our analysis: that document in-
fluence has a discernible effect on how people write (changes in topics) as well as
what they choose to cite.

Figure 13 depicts a similar picture using citation counts. Points represent the
citation count of a paper as of 2015 (internal to our sample), and the x- and y-axes
represent mean citation counts for papers cited by and citing each document. The
high-citing-high dynamic is observed in citation counts as it was with document in-
fluence, but to a greater extent. Generally, there is some skew toward citing higher
cited papers, but this effect is quite pronounced for highly-cited papers themselves:
a highly cited paper is very likely to be in quadrant A where it cites and is cited
by other highly cited papers. The high-citing / highly-cited skew is likely due to
the positive feedback whereby highly cited papers are that much more likely to be
cited. Unlike influence, which is a discursive measure of impact, citations are more
self-reinforcing.
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Figure 12: Influence of papers cited at least once in the APS (color points) and the
mean log influence of the papers that cite them (x-axis) and mean log influence of
the papers they cite (y-axis). Also shown is the kernel density estimate (KDE) in
both spatial dimensions for unweighted (gray) and influence-weighted (red) dis-
tributions. In all dimensions, points represent s.d. from the mean influence. For
presentations, outliers beyond ±20 s.d. of the mean are omitted. Papers in quad-
rant A cite and are cited by highly influential papers. Papers in quadrant B are cited
by influential papers but cite uninfluential papers. In quadrant C, papers cite and
are cited by uninfluential papers. And in D, papers cite influential papers, but are
cited by uninfluential papers. The weighted KDEs (red distributions in plots above
and to the right of the scatter plot) demonstrate that influential papers cite and are
cited by papers of greater-than-average influence.
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Figure 13: Log citation count of papers cited at least once in the APS (color points)
and the mean log citation count of the papers that cite them (x-axis) and mean log
citation count of the papers they cite (at the time of publication; y-axis). KDEs
are depicted for unweighted (gray) and citation-weighted (red) distributions. In all
dimensions, points represent s.d. from the mean and outliers beyond ±20 s.d. are
omitted. Papers in quadrant A cite and are cited by highly-cited papers. Papers in
quadrant B are cited by highly cited papers but cite under-cited papers. In quadrant
C, papers cite and are cited by under-cited papers. In D, papers cite highly cited
papers, but are cited by under-cited ones. The weighted KDEs show that highly
cited papers cite and are cited by papers with greater-than-average citation counts.
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4.8 Document Influence vs. Persistence & Sleeping Beauty Scores

We found a complex relationship between discursive influence, citation counts and
other aspects of a publication. In particular, the topic uniformity of authors’ bib-
liographies (Persistence; Eq. 11 in the main text) and the convexity of papers’
citations over time (sleeping beauty scores [20]) were correlated to influence and
citations. Figure 14 illustrates the three-dimensional relationship between influ-
ence, citation counts and author persistence. Papers written by persistent authors
were cited more than those by less persistent authors. However, papers written by
persistent authors tended to be less influential. This is primarily due to the fact
that influence is summed over topics—the same topics across which, if an author
is spread thin, they are less persistent. In other words, the “easiest” way for a doc-
ument to be highly influential is to contribute discursive changes to many topics.
This diversity, then, diminishes the persistence of an author. Also, persistence is
unbounded and it is fairly difficult to be exceptionally persistent: one must have
written many papers in the same topic(s) over a long period of time. It might be
that overcoming this difficulty is related, in a professional sense, to overcoming the
difficulty of having a highly cited paper.

Papers with relatively high influence but few citations (upper left quadrant in
Figure 1 in the main text) were those that made discursive contributions that went
un-credited with citations. One hypothesis was that these papers tended to intro-
duce new concepts, the value of which were not taken up by the typical news cycle
of science. Figure 15 shows the relationship between papers’ influence, citation
counts and sleeping beauty score. In this case, the trend is different than for au-
thor persistence. Papers with above-average influence tended to score higher on
the sleeping beauty index. The inflection point for this effect—where papers of
above-average influence tend to have an above-average sleeping beauty score—is
approximately +.5 s.d. of the mean. In terms of citations, the sleeping beauty score
is somewhat circular because it uses the maximum citations in certain years after
publication. Highly cited papers do tend to have slightly above-average sleeping
beauty scores. This three-way relationship reflects the fact that sleeping beauties
are not randomly selected for an over-due spike in citations, but instead, that a
community was late in acknowledging their contribution to discourse.
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Figure 14: Influence vs. citations vs. author persistence in the APS data. All
dimensions are logged and centered for visualization. Unweighted (gray) and
persistence-weighted KDEs are displayed for each spatial axis. Higher influence
papers are less likely to be authored by persistent authors, whereas highly cited
papers are more likely to have a more persistent author.
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Figure 15: Influence vs. citations vs. sleeping beauty scores in the APS data. All
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are shown for each spatial axis. Higher influence papers tend to have higher SB
scores, as are highly cited papers.
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4.9 Influence, Citations and Author Influence in JSTOR

The relationship between influence and citations is reviewed in the main text (see
Figure 1). In the JSTOR collection, we determined that this relationship is specific
to topics. For each topic, the correlation between influence and citation counts
was computed (ˆ̀d × Cd; Table 6). These correlations were mostly significant, but
fairly weak, ranging from -0.05 to 0.06. Given the design of RDIM, influence is
topic-specific but citations are not. To explore how citations relate to each topic
specifically, we scaled citation counts by the document-topic mixture and com-
puted the same correlations (ˆ̀d × θdCd). With topic-relative citation counts, the
correlations increased for all topics compared to raw counts. The correlation was
positive for all but two topics and ranged from -0.02 to 0.13. While the strength
of these correlations make it hard to use discursive influence as the sole or even
primary predictor of citation influence, our finding highlights the model’s ability to
pick up topics sensitive to different citation habits.

RDIM is primarily a model of documents, but it affords us with estimates of
how contextual features, like authorship, can change influence. The relationship
between authors extrinsic influence and their own citation counts can be compared
by looking at an author’s bibliography and their coefficients in µ̂. Table 7 shows
the correlation between authors’ coefficients and their total citations, scaled by the
document-topic mixture for each document. When topics are ordered by correla-
tion, an interesting picture emerges: topics related to math and the natural sciences
are found near the bottom (shown in red) and topics about arts and humanities
are close to the top. Social sciences span most of the range, but are roundly dis-
placed by natural sciences on the bottom. This is highly suggestive of the nature
of how authors impact different areas of research. In the natural sciences, authors’
extrinsic impact on their articles’ discursive influence is not predictive of those
articles’ citation counts. However, in the humanities and social sciences, where
narrative may be more central, authors who’s name-sake boost discursive influence
are more highly cited. Authors’ ability to change the mix of discourse appears
to be valued more in the humanities and social sciences than in math and natural
sciences. In fields focused on natural and inflexible or formal objects of inquiry
(e.g. Cell Biology, Physical Chemistry, and various statistics topics), authors that
change the narrative are less rewarded than in fields where inquiry is focused on
artistic, humanistic or social objects (e.g. Philosophy, Literary Theory, Education).
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Topic ˆ̀
d × Cd

ˆ̀
d × θdCd

Academic Verbiage 0.0507 0.0954
Academic Verbiage 0.0410 0.0982
Academic Verbiage 0.0534 0.0910

American History (0.0069) 0.0455
Anthropology 0.0152 0.0839
Archaeology 0.0160 0.0737

Behavioral Psychology (-0.0028) 0.0580
Behavioral Science 0.0588 0.1140

Biostatistics -0.0007 0.0594
Cell Biology 0.0138 0.0693

Child & Family Studies -0.0294 0.0329
Cognitive Science 0.0656 0.1191

Constructivism 0.0295 0.0926
Cultural History -0.0486 -0.0141
Cultural Studies (0.0022) 0.0647

Decision Science 0.0422 0.1053
Demography 0.0659 0.1152

Ecology 0.0469 0.1050
Econometrics 0.0306 0.0984

Economic Development (-0.0030) 0.0684
Education 0.0414 0.1058

Electoral Politics (0.0037) 0.0777
Engineering 0.0271 0.0752

Environmental Science (0.0089) 0.0711
Ethics 0.0171 0.0890

Evolutionary Biology 0.0268 0.0882
Evolutionary Development 0.0561 0.1063

Family and Child Development 0.0128 0.0753
Frequentist Statistics (-0.0005) 0.0569

Game Theory 0.0255 0.0919
Group Behavior 0.0257 0.0813
Health Genetics (0.0066) 0.0625

International Relations -0.0356 0.0357
Law (0.0025) 0.0738

Literary Theory -0.0448 -0.0199
Management 0.0337 0.0961

Marine Ecology 0.0522 0.1111
Marketing (0.0076) 0.0816
Medicine 0.0460 0.1096
Networks 0.0184 0.0816

Organization Science 0.0516 0.1121
Organizational Behavior & Theory 0.0622 0.1252

Philosophy 0.0216 0.0879
Physical Chemistry 0.0163 0.0784

Plant Biology (0.0003) 0.0519
Psychology 0.0262 0.0876

Psychology (Quantitative) 0.0391 0.0858
Qualitative Research 0.0129 0.0203

Quantitative Social & Health Science 0.0276 0.0949
Sexual Health 0.0444 0.0957

Social Movements -0.0256 0.0420
Statistics (Probability) 0.0186 0.0800

Stochastic Processes 0.0292 0.0887

Table 6: For each JSTOR topic, Spearman correlations between influence, ˆ̀
d and

unscaled documents citation counts, Cd, as well as between influence and citations
scaled by document-topic mixtures, θdCd. Correlations significant at p < 0.01 are
shown in green (positive) and red (negative).
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Topic µ̂A ×
∑

d∈A Cdθd
Anthropology 0.3728

Child & Family Studies 0.3549
Education 0.3459

Electoral Politics 0.3299
Organization Science 0.3252

Philosophy 0.3199
Academic Verbiage 0.3099

Law 0.3022
Ethics 0.2982

Organizational Behavior & Theory 0.2978
Cognitive Science 0.2950

Cultural Studies 0.2939
Constructivism 0.2917

Group Behavior 0.2783
Social Movements 0.2662

International Relations 0.2617
Cultural History 0.2521
Literary Theory 0.2504

Academic Verbiage 0.2499
Sexual Health 0.2333
Demography 0.2317

American History 0.2290
Economic Development 0.2203

Decision Science 0.2157
Family and Child Development 0.2147

Game Theory 0.2130
Marketing 0.2102

Quantitative Social & Health Science 0.2046
Academic Verbiage 0.1923

Behavioral Psychology 0.1817
Management 0.1765

Psychology (Quantitative) 0.1711
Networks 0.1705

Psychology 0.1360
Qualitative Research 0.1015

Econometrics 0.0892
Stochastic Processes 0.0841

Behavioral Science 0.0810
Engineering 0.0776

Archaeology 0.0741
Evolutionary Development 0.0706

Ecology 0.0595
Medicine 0.0521

Marine Ecology 0.0367
Statistics (Probability) 0.0331

Plant Biology 0.0173
Biostatistics (-0.0037)

Frequentist Statistics (-0.0039)
Physical Chemistry -0.0230

Evolutionary Biology -0.0295
Environmental Science -0.0773

Health Genetics -0.0885
Cell Biology -0.1068

Table 7: Spearman correlations between author coefficients and authors’ total cita-
tions, scaled by document mixture. Arts & Humanities-related topics are shown in
blue, Social Sciences in green and Math & Natural Sciences in red. Correlations
not significant at p < 0.01 are given in parentheses.
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5 De-biasing Citations: Half-life of Discourse

Citation counts exhibit preferential attachment: highly cited papers continue to be
cited at a higher rate than less cited papers [28, 29]. Such reinforcement can be
observed as a long tail in the distribution of citation counts over papers [14]. In
both datasets, we found the distribution for document influence, Id, had a shorter
tail than citations counts, Cd. For individual papers, citations follow a log-normal
decay over time [34], but the distribution of citation counts across papers is scale-
free [29]. To assess the size of the tail in both distributions, type 1 power-laws
of the un-scaled form y = x−γ were fit to Cd and Id with a cutoff [14]. Smaller
values of γ denote longer-tailed distributions. In APS, γC = .20 and γI = .29
and in JSTOR γC = .21 and γI = .48: citations have a longer tail in both sets.
While citation counts have been shown to follow such a curve, document influence
is observed. We also fit negative binomial PMFs to each distribution and found
that citations have significantly higher dispersion than document influence (APS
Disp(C) = 1.10, Disp(I) = 1.00; JSTOR Disp(C) = 1.04, Disp(I) = 1.00),
affirming their longer tail.

While citation counts are bursty and decay, topic contribution is more stable.
Much of the variance in topic contributions is because documents tend not to con-
tribute much to most topics, but instead, they make sizable contributions to a few
topics. These contributions decay less quickly. With a 10,000-document sample
from JSTOR, the average topic contribution decayed at a near-linear, normalized
rate of 0.02 per year (about 2% / year). This confirms that our model’s topic con-
tribution metric helps de-bias the credit assigned by citations. It also suggests that,
while some genuine citation-traced impact may not be present in text, there is a
sizable portion of influence simply not represented in citations.

To quantify the stability of topic contribution (Eq. 10; main text) compared
to citation counts, we computed the half-life of each for a 1,000-document sample
from every percentile of the influence distribution. Half-life, T1/2, is the number
of time-steps after which the given score is half of what it was at the beginning.
T1/2 was calculated for both citations and topic contribution. Documents in higher
percentiles had longer half-lives for each metric. But in every case, citations had
shorter half-lives and smaller variance than topic contribution (Table 8). This con-
firms that topic contribution is more stable over all, but it also shows that higher
influence papers tend to make longer-lasting discursive contributions.
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Influence Citation Counts Topic Contribution
Percentile Variance T1/2 Variance T1/2

0-10 0.86 2.74 2.56 5.50
10-20 0.51 2.54 2.24 6.65
20-30 0.64 2.30 2.08 6.53
30-40 0.76 1.34 2.64 6.38
40-50 0.62 1.47 2.01 6.96
50-60 0.83 2.16 1.77 7.34
60-70 1.57 1.65 2.03 7.81
70-80 1.43 1.75 2.08 7.36
80-90 0.73 2.03 1.82 8.54

90-100 1.90 2.95 1.96 10.07

Table 8: Variance and half-life, T1/2, for citation counts and topic contribution (Eq.
10; main text). 1,000 documents were randomly sampled from each percentile of
the document influence distribution. Variance was calculated on observed data,
citation half-life was calculated using continuous log-normal PDFs fit to observed
data, and contribution half-lives were observed. For variance, scales were normal-
ized to make them comparable and half-life is presented in years.

6 Models of Citations

Within the JSTOR collection, only 29% of documents were cited by another docu-
ment. Many of our analyses of APS data relied on the citation-rich environment of
physics research. JSTOR offers a broader challenge: predicting what documents
will be cited. Here, we explore how discursive influence can help predict citedness
and citations counts in JSTOR. As citation habits are time-dependent we used both
document influence, Id, and date, td, as predictors for whether or not a document
would be cited at least once. A stack of increasingly specified logit models were
fit to citedness, Cd > 0 (Table 9). The fully specified model minimized AIC and
estimated a negative constant effect, and positive effects for influence and date.
These models were not designed to be accurate predictors of citedness, but to show
that influence is time-agnostic and statistically helpful in situations where there is
a temporal effect.

A second stack of models was used to predict citations counts, Cd. These mod-
els consisted of increasingly specified logistic-link negative binomial regressions
on Cd (Table 10). The fully specified model had the lowest AIC and estimated a
negative constant effect, positive singular effects for influence and date, and a small
negative effect for the interaction between document influence and date. This sec-
ond order effect was too weak to warrant further characterization.

45



Model AIC Parameter Coef. s.e. 95% C.I. P>|z|
Cd > 0 ∼ 1 16,573.5

Intercept -0.7948 0.019 [-0.831, -0.758] 0.000
Cd > 0 ∼ Id + 1 16,031.4

Intercept -0.8286 0.019 [-0.866, -0.791] 0.000
Id 0.4388 0.019 [0.401, 0.476] 0.000

Cd > 0 ∼ td + 1 16,504.5
Intercept -0.7994 0.019 [-0.836, -0.763] 0.000

td 0.1583 0.019 [0.121, 0.195] 0.000
Cd > 0 ∼ Id + td + 1 16,003.0

Intercept -0.8308 0.019 [-0.869, -0.793] 0.000
Id 0.4268 0.019 [0.389, 0.465] 0.000
td 0.1100 0.019 [0.072, 0.148] 0.000

Cd > 0 ∼ Id ∗ td + 1 16,002.5
Intercept -0.8310 0.019 [-0.869, -0.793] 0.000

Id 0.4268 0.019 [0.389, 0.465] 0.000
td 0.1097 0.020 [0.071, 0.148] 0.000

Id ∗ td -0.0014 0.019 [-0.036, 0.039] 0.943

Table 9: Increasingly specified logit models predicting citedness, Cd > 0, of doc-
uments in the JSTOR collection.
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Model AIC Parameter Coef. s.e. 95% C.I. P>|z|
Cd ∼ 1 768,344.3

Intercept -0.7787 0.003 [-0.784, -0.773] 0.000
Cd ∼ Id + 1 754,381.2

Intercept -0.8307 0.003 [-0.836, -0.825] 0.000
Id 0.3262 0.003 [0.321, 0.332] 0.000

Cd ∼ td + 1 767,628.1
Intercept -0.7814 0.003 [-0.787, -0.776] 0.000

td 0.0766 0.003 [0.071, 0.082] 0.000
Cd ∼ Id + td + 1 754,108.4

Intercept -0.8320 0.003 [-0.838, -0.826] 0.000
Id 0.3226 0.003 [0.317, 0.328] 0.000
td 0.0479 0.003 [0.042, 0.053] 0.000

Cd ∼ Id ∗ td + 1 753,927.2
Intercept -0.8356 0.003 [-0.841, -0.830] 0.000

Id 0.3267 0.003 [0.321, 0.332] 0.000
td 0.0369 0.003 [0.031, 0.043] 0.000

Id ∗ td -0.0377 0.003 [-0.032, -0.043] 0.000

Table 10: Increasingly specific negative binomial regression models predicting ci-
tation counts, Cd, of papers in the JSTOR collection.
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