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Abstract

Current neurobiological accounts of language and cognition offer diverging views on the questions of ‘where’ and ‘how’ semantic
information is stored and processed in the human brain. Neuroimaging data showing consistent activation of different multi-modal
areas during word and sentence comprehension suggest that all meanings are processed indistinctively, by a set of general
semantic centres or ‘hubs’. However, words belonging to specific semantic categories selectively activate modality-preferential
areas; for example, action-related words spark activity in dorsal motor cortex, whereas object-related ones activate ventral visual
areas. The evidence for category-specific and category-general semantic areas begs for a unifying explanation, able to integrate
the emergence of both. Here, a neurobiological model offering such an explanation is described. Using a neural architecture repli-
cating anatomical and neurophysiological features of frontal, occipital and temporal cortices, basic aspects of word learning and
semantic grounding in action and perception were simulated. As the network underwent training, distributed lexico-semantic cir-
cuits spontaneously emerged. These circuits exhibited different cortical distributions that reached into dorsal-motor or ventral-
visual areas, reflecting the correlated category-specific sensorimotor patterns that co-occurred during action- or object-related
semantic grounding, respectively. Crucially, substantial numbers of neurons of both types of distributed circuits emerged in areas
interfacing between modality-preferential regions, i.e. in multimodal connection hubs, which therefore became loci of general
semantic binding. By relating neuroanatomical structure and cellular-level learning mechanisms with system-level cognitive func-
tion, this model offers a neurobiological account of category-general and category-specific semantic areas based on the different
cortical distributions of the underlying semantic circuits.

Introduction

Current semantic theories offer diverging perspectives on how word
meaning is acquired, represented and processed in the human brain.
One tradition views the cognitive basis of meaning as a symbolic,
‘amodal’ system containing abstract representations defined in terms
of semantic features or correlations between words, bearing no
explicit relationship with the concrete objects and actions the sym-
bols are used to speak about (Collins & Loftus, 1975; Potter, 1979;
Ellis & Young, 1988). A putative brain basis for such a system of
symbolic-conceptual representations has been attributed to ‘semantic
hubs’, higher-association multimodal areas located in frontal, tempo-
ral and parietal cortices that have been found active during, or even
to be necessary for, semantic processing (Price, 2000; Bookheimer,
2002; Devlin et al., 2003; Vigneau et al., 2006; Patterson et al.,
2007; Binder & Desai, 2011; Pulverm€uller, 2013).

A second tradition builds on the insight that semantic knowledge
requires grounding in the real world (Searle, 1980; Harnad, 1990).
Symbols are used to speak about specific objects, actions and other
entities; access to such semantic knowledge likely involves processing
sensorimotor information in modality-preferential areas of the cortex:
for example, understanding an object-related word such as ‘cat’
should reactivate visual areas, whereas an action word like ‘grasp’
motor ones. Support for modality-specific semantic processes comes
from neuropsychological and neuroimaging studies showing seman-
tic-category specificity of cortical activations and category-specific
deficits after lesions in modality-preferential areas (Shallice, 1988;
Martin, 2007). For example, word and sentence comprehension induce
category-specific activations in modality-preferential motor and sen-
sory (visual, auditory, olfactory and gustatory) areas (Barsalou, 2008;
Binder & Desai, 2011; Kiefer & Pulverm€uller, 2012; Pulverm€uller,
2013; Kemmerer, 2015).
Here, we attempt to explain and integrate the above experimental

data and theories by means of a single neurobiological model. Our
Correspondence: Dr M. Garagnani, as above.
E-mail: M.Garagnani@fu-berlin.de

© 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited.

European Journal of Neuroscience, Vol. 43, pp. 721–737, 2016 doi:10.1111/ejn.13145

http://creativecommons.org/licenses/by/4.0/


hypothesis is that the semantic-category-specific and -general func-
tional behaviours observed in distinct cortical areas are a direct con-
sequence of well-established neuroscience facts and principles, and
should therefore spontaneously emerge in specific parts of the cortex
as a result of sensorimotor correlations and associative learning. To
address this hypothesis, we implemented a neurocomputational
model of relevant primary, secondary and higher-association areas
in the frontal, temporal and occipital lobes of the human brain and
simulated elementary processes of language acquisition in it, focus-
ing specifically on the semantic grounding of object- and action-
related words.
A range of previous connectionist models successfully addressed

aspects of language learning and processing, although most did not
attempt to replicate the neuroanatomy of the cortical areas concerned
with the corresponding brain processes (Elman et al., 1996; Plunkett,
1997; Dell et al., 1999; Plaut & Gonnerman, 2000; Christiansen &
Chater, 2001). While some recent works did take connectivity struc-
ture into account (Husain et al., 2004; Guenther et al., 2006; Ueno
et al., 2011), they either did not incorporate learning mechanisms, or
made use of ones (e.g. back-propagation) whose neurobiological
plausibility is questionable (Mazzoni et al., 1991; Braitenberg &
Sch€uz, 1998; O’Reilly, 1998). By contrast, here we implemented only
learning mechanisms that mimic well-documented neurophysiological
phenomena of Hebbian synaptic plasticity (Artola & Singer, 1993),
so as to show how associative learning and neuroanatomical structure
interact to bring about the two different functional behaviours in
semantic processing described above (category-specific and -general)
in distinct cortical areas. Similar approaches have previously been
used to provide neurobiological accounts for the spontaneous emer-
gence and cortical topography of resting state activity, perceptual and
action decisions, and working memory (Deco et al., 2013a,b; Garag-
nani & Pulverm€uller, 2013; Pulverm€uller & Garagnani, 2014).

Materials and methods

We take a semantic grounding perspective (Barsalou, 1999; Pul-
verm€uller, 1999) and postulate that learning the meaning of at least
a basic set of words and symbols of any language involves the for-
mation of referential-semantic links between their ‘form’ – the artic-
ulatory- and acoustic-phonological patterns in the case of single
spoken words – and the types of object or action these symbols are
typically used to speak about (Barsalou, 2008; Pulverm€uller &
Fadiga, 2010; Glenberg & Gallese, 2012; Pulverm€uller, 2013).
Accordingly, we use a neurocomputational model of relevant peri-
and extra-sylvian cortical areas (see below) to simulate the sponta-
neous emergence of such associative links.

General structure and features of the model

The neural model consists of 12 identical interconnected ‘areas’ of
graded-response cells, implementing random and sparse between-
and within-area connections (Fig. 1B and C; Appendix A). Each
model area consists of two layers (or ‘banks’) of excitatory and inhi-
bitory cells, and simulates a specific cortical area (Fig. 1A).

1 As information in the articulatory motor cortex relates to the pro-
duction of a word form, and information in the auditory cortex to
the acoustic perception of such a form, both of these perisylvian
areas (labelled M1i and A1, respectively) were included. More-
over, as information about the objects about which we speak when
using words such as ‘sun’ comes in through the primary visual
cortex, and because a self-performed action related to the meaning
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Fig. 1. Model of lexical and semantic mechanisms. The 12 cortical areas
modelled (A), their global connectivity architecture (B), and aspects of the
micro-structure of their connectivity (C) are illustrated. (A) Six perisylvian
and six extrasylvian areas are shown, each including a dorsal (frontal) and a
ventral (temporal) part. Perisylvian areas include three areas in inferior fron-
tal gyrus (red colours), including inferior-prefrontal (PFi), premotor (PMi)
and primary motor cortex (M1i), and three areas in the superior temporal
lobe (in blue), including auditory parabelt (PB), auditory belt (AB) and pri-
mary auditory cortex (A1). These areas can store correlations between neu-
ronal activations carrying articulatory-phonological and corresponding
acoustic-phonological information, for example when phonemes, syllables
and spoken word forms are being articulated (activity in M1i) and acoustic
features of these spoken words are simultaneously perceived (stimulation of
primary auditory cortex, A1). Extrasylvian areas include three areas in lat-
eral/superior frontal cortex (yellow to brown), including dorsolateral pre-
frontal (PFL), premotor (PML) and primary motor cortex (M1L), and three
areas forming the occipito-temporal (‘what’) visual stream of object process-
ing (green), including anterior-temporal (AT), temporo-occipital (TO) and
early visual areas (V1). Together with the perisylvian ones, these extrasylvian
areas can store correlations between neuronal activations carrying semantic
information, for example when words are used (activity in all perisylvian
areas) to speak about objects present in the environment (activity in V1, TO,
AT) or about actions the individual engages in (activity in M1L, PML, PFL).
Numbers indicate Brodmann areas. (B) Schematic illustration of all 12 mod-
elled areas and the known between-area connections implemented. The col-
ours indicate correspondence between cortical and model areas. See text for
a detailed description of the neuroanatomical evidence supporting the imple-
mented connectivity structure. (C) Schematics of micro-connectivity of one
of the 7500 single excitatory neural elements modelled (labelled ‘e’). Within-
area excitatory links (in grey) to and from ‘cell’ e are random and sparse,
and limited to a local (19 9 19) neighbourhood (light-pink shaded area).
Lateral inhibition between e and neighbouring excitatory elements is realised
as follows: the underlying cell ‘i’ inhibits e in proportion to the total excita-
tory input it receives from the 5 9 5 neighbourhood (dark-purple shaded
area); by means of analogous connections (not depicted), e inhibits all of its
neighbours. Each pair (e, i) of model cells is taken to represent an entire
cluster or column (grey matter under approximately 0.25 mm2 of cortical sur-
face) of pyramidal cells and the inhibitory interneurons therein. See
Appendix A for a complete specification of the model.
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of action-related words such as ‘grasp’ or ‘run’ is controlled by
the lateral and superior motor cortex, the model also included pri-
mary visual and dorsolateral motor cortices (areas V1 and M1L).

2 In addition to primary cortices, ‘higher’ secondary and multi-
modal regions known to have strong neuroanatomical links with
the above four primary sensorimotor cortices were modelled (see
‘Network structure and connectivity of the simulated brain areas’
below). These were secondary inferotemporo-occipital visual,
auditory belt, and inferior and lateral premotor cortex (TO, AB,
PMi, PML) and, respectively, adjacent multimodal anterior-tem-
poral, superior-temporal (auditory parabelt) and inferior and dor-
solateral prefrontal cortices (AT, PB, PFi, PFL).

The architecture builds upon and extends an existing six-area
model of the left perisylvian language cortex that was developed to
simulate the emergence of memory traces for (meaningless) spoken
words in the cortex and explain neurophysiological responses to lin-
guistic stimuli (Garagnani et al., 2007, 2008; Garagnani & Pul-
verm€uller, 2011). As in previous versions of the architecture, all
functional and structural features implemented closely reflect well-
documented properties of the human cortex, including the following:

1 known structure of the neuroanatomical links between the mod-
elled sensorimotor and multimodal brain systems;

2 sparse, patchy and topographic between- and within-area con-
nections, with probability of a synaptic link existing between
two cells falling off with their distance (Kaas, 1997; Braitenberg
& Sch€uz, 1998);

3 local lateral (mutual) inhibition (Fig. 1C) and area-specific glo-
bal regulation mechanisms (Braitenberg, 1978b; Yuille & Gei-
ger, 2003);

4 Hebbian learning mechanisms, simulating synaptic plasticity
phenomena of long-term potentiation and depression (Artola &
Singer, 1993);

5 neurophysiological dynamics of single cells including temporal
summation of inputs, sigmoid transformation of membrane poten-
tials into neuronal outputs, and adaptation (Matthews, 2001);

6 presence of uniform white noise (simulating spontaneous, base-
line neuronal firing) in all parts of the network at all times
(Rolls & Deco, 2010).

A detailed description of the connectivity structure [point (1)
above] is provided in ‘Network structure and connectivity of the
simulated brain areas’ below. The neural-level features [points (2–
6)] are identical to those implemented in previous versions of the
model (Garagnani et al., 2008, 2009b; Garagnani & Pulverm€uller,
2011, 2013; Pulverm€uller & Garagnani, 2014). For completeness,
they are summarized again in Appendix A.
Note that we strived to model only mechanisms that have a physi-

ological correlate, and implemented a connectivity structure that clo-
sely reflects known neuroanatomical pathways between the
modelled cortical areas. A direct comparison of the effectiveness
and biological accuracy of the learning rule used here with that of
other, known brain-inspired synaptic plasticity rules is provided in
Garagnani et al. (2009b). Although the implementation of non-
strictly biologically realistic aspects (e.g. ‘all-to-all’ connectivity, or
back-propagation learning; Rumelhart et al., 1986) would likely lead
to a more efficient – from an engineering point of view – system
(i.e. exhibiting better learning performance or increased memory
capacity), the adoption of any such non-biological features would
undermine the neuroscientific relevance of the model, preventing us
from using the present simulation results as a basis to make claims
about corresponding brain processes, in focus here.

Previous simulations have shown that, subsequent to the repeated
concomitant presentation of activation patterns to (possibly indi-
rectly) linked model areas, networks including the above range of
neurobiologically realistic features give rise to the formation of dis-
tributed associative circuits (Garagnani et al., 2007, 2008, 2009b)
corresponding to what Hebb once postulated and labelled ‘cell
assemblies’ (CAs; Hebb, 1949). CAs can be defined structurally as
sets of nerve cells that are ‘. . . more strongly connected to each
other than to other neurons’ (Braitenberg, 1978a). They constitute
‘memory circuits’ that emerge as a result of correlational learning
mechanisms and bind together sets of neurons that are frequently
co-active (Hebb, 1949; Braitenberg, 1978a; Palm, 1982). Once
developed, CAs behave as coherent functional units with two quasi-
stable states (‘on’ and ‘off’; Garagnani et al., 2007, 2008, 2009b;
Pulverm€uller & Garagnani, 2014). Cortical CAs whose formation is
driven by correlated sensory and motor information are also called
action-perception circuits (Pulverm€uller & Fadiga, 2010). Here, we
simulated the spontaneous formation of CAs linking symbols (word
forms) to aspects of their meaning manifest in information about
objects or actions they refer to.

Network structure and connectivity of the simulated brain
areas

The original model of the language cortex simulated six left-perisyl-
vian areas (three in the inferior fronto-central cortex and three in the
superior-temporal auditory system; Fig. 1A); here this model is aug-
mented with six new areas (and relevant connections between them)
having a role in transferring and processing semantically relevant
information. Because these ‘semantic’ areas are outside the perisyl-
vian (language) cortex, in the remainder of this article they are
referred to as ‘extrasylvian’ areas. The extrasylvian areas include dor-
solateral fronto-central motor, premotor and prefrontal cortices (M1L,
PML, PFL), and three areas constituting the ventral occipito-temporal
visual ‘what’ stream (V1, TO, AT). Thus, within both peri- and extra-
sylvian systems, we distinguished between a ‘dorsal stream’ section,
situated in the frontocentral cortex (depicted in different shades of
red/yellow) and a ‘ventral stream’ section, in the temporal and occipi-
tal cortex (in shades of blue/green) were distinguished between.
Neuroanatomical evidence shows that adjacent cortical areas tend

to be connected with each other through next-neighbour between-area
links (Pandya & Yeterian, 1985; Young et al., 1994, 1995). These
exist within each triplet of areas of the four systems modelled, that is,
amongst: (1) inferior frontal areas PFi – PMi –M1i; (2) superior-lateral
frontal areas PFL – PML – M1L (see also Arikuni et al., 1988; Lu
et al., 1994; Dum & Strick, 2002, 2005); (3) superior and lateral audi-
tory areas A1 – AB – PB (Pandya, 1995; Kaas & Hackett, 2000;
Rauschecker & Tian, 2000); and (4) inferior temporo-occipital areas
V1 – TO – AT (Distler et al., 1993; Nakamura et al., 1993).
Evidence also indicates the presence of long-distance cortico-corti-

cal links (see purple arrows in Fig. 1B) connecting areas distant from
each other. Amongst the long-distance links within the fronto-tem-
poro-occipital cortex, only the well-documented mutual and reciprocal
connections between anterior temporal, superior parabelt, and inferior,
and posterior-superior-lateral prefrontal areas were implemented. The
connections between anterior (and middle), inferior, and posterior-
superior temporal cortex (areas AT, PB in Fig. 1B) and inferior pre-
frontal (and premotor) cortex (PFi) are realised by the arcuate and
uncinate fascicles (Makris et al., 1999; Romanski et al., 1999b; Pet-
rides & Pandya, 2001, 2009; Catani et al., 2005; Parker et al., 2005;
Romanski, 2007; Rilling et al., 2008; Makris & Pandya, 2009; Pet-
rides et al., 2012; Rilling, 2014). Dorsolateral prefrontal (and premo-
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tor) cortex (PFL) is reciprocally linked to anterior and inferior tempo-
ral regions (AT; Pandya & Barnes, 1987; Ungerleider et al., 1989;
Webster et al., 1994), as well as to the superior temporal cortex (PB)
via the extreme capsule (Pandya & Barnes, 1987; Romanski et al.,
1999a,b; Schmahmann et al., 2007; Dick et al., 2014).

Simulating semantic symbol grounding

At the onset of learning the network was in a ‘na€ıve’ state, i.e. one
in which all between- and within-area synaptic links connecting sin-
gle cells were established at random, as were their synaptic effica-
cies (weights). Word learning and semantic grounding were then
simulated by means of repeated ‘learning trials’, involving concomi-
tant stimulation of primary areas of the network, as described
below.
As each spoken word form is characterized by an articulatory

motor schema and an acoustic schema, each learning trial entailed
concurrent stimulation of inferior-frontal primary motor and supe-
rior-temporal primary auditory areas (perisylvian primary areas M1i
and A1 in Fig. 1). As some words are typically used to speak about
visually perceivable objects and one typical learning situation for
such words is the use of the word while the referent object is pre-
sent (Vouloumanos & Werker, 2009; Barros-Loscertales et al.,
2012), learning of object-related words was simulated by concurrent
stimulation of both perisylvian primary areas plus visual cortex
(V1). Similarly, learning aspects of action-related word meaning
involved simultaneous activation of primary perisylvian and lateral
motor areas (M1L); this was meant to simulate a situation in which
action words are used when the learning child performs the corre-
sponding action (Tomasello & Kruger, 1992).
The learning of six object- and six action-related words was simu-

lated, each by concurrent stimulation of three of the four primary
areas, with one specific sensorimotor pattern of neuronal activation
for each word. Each sensorimotor pattern consisted of a set of 19
cells per primary area (57 cells in total), randomly selected amongst
the 25-by-25 cells forming one area (about 3% of cells). Each of the
12 sensorimotor patterns was presented in 3000 learning trials,
resulting in a total of 36 000 (randomly ordered) trials. (This num-
ber was chosen empirically, on the basis of previous simulations
obtained with six-area architectures; such studies showed the pres-
ence of cell-assembly circuits already after 50–100 trials, and no
substantial changes occurring between 1000 and 2000 presentations;
Garagnani et al., 2009b. Here the training was extended to 3000
presentations per pattern, as the network had to develop CA circuits
spanning nine instead of six interconnected areas, linking three pat-
terns instead of just two.) Therefore, the same ‘core’ of neurons
were stimulated during each presentation of a given pattern; how-
ever, white noise was always present and overlaid the sensorimotor
input patterns, so as to account for a degree of variability in the
physical features of word forms and semantically relevant objects
and actions. Each learning trial lasted 16 simulation-time steps
(equivalent to approximately 300 ms) and was followed by a resting
interval of variable duration during which no input was provided
until activity had returned to baseline. A new trial started as soon as
the global inhibition levels in both areas PFi and PB dropped below
a pre-specified threshold (0.65 in the present simulations). As object
words are less informative about motor activities than action words,
and the latter typically convey less visual information than the for-
mer, a static noise pattern was presented to the ‘non-partaking’ pri-
mary area during training. Hence, in each action- (object-) related
word learning trial, area V1 (M1L) was stimulated with a different
random pattern of 19 cells. This was intended to mimic the presum-

ably larger variability of the above relationships (or, equivalently,
the lower degrees of correlation).
Thirteen different instances of randomly initialized networks hav-

ing the architecture described above were implemented and sub-
jected to the same learning procedure, each instance being trained
with a different set of 12 sensorimotor patterns. As both action
and object word meanings may be acquired even if congruent
visual or motor information is not consistently present in each epi-
sode of learning, the ability of the model to develop word circuits
when the (modality-specific) semantic component of the input pat-
tern is provided only in a fraction of the learning trials was also
investigated. To do this, the above set of simulations was repeated
under three different conditions, in which the fraction of learning
trials containing semantic input varied from the initial 100% to 75,
66.7 and 50% (these fractions are the result of replacing the pat-
tern normally presented as input to V1 or M1L with a random, sta-
tic one once every four, three, and every other trial, respectively).
Again, 13 different instances of randomly initialized networks were
trained in each condition.

Data analysis

As further explained in the Results below, the training led to the
emergence of CA circuits in the network, that is, sub-networks of
strongly and reciprocally connected cells linking together specific
sensorimotor patterns in primary areas by way of cells in intermedi-
ary areas. The following procedure was applied to define and quan-
tify the emerging CAs.
After training, the neurons forming each of the 12 CAs across the

different network areas were identified. To this end, the response of
all 7500 excitatory cells to each of the 12 word-form patterns was
recorded. More precisely, the time-averaged output (firing rate) of
each excitatory cell was estimated over the 15 simulation steps fol-
lowing a single test-presentation of the auditory and articulatory pat-
terns of a learnt word form (no semantic input was provided). An
excitatory cell was then considered a member of the CA for pattern
w if and only if its (estimated) time-averaged response to w reached
a given threshold h. The threshold h was area- and cell-assembly
specific, and defined as a fraction c of the maximal single-cell
response in that area to pattern w. More formally,

h ¼ hAðwÞ ¼ cmax
x2A

Oðx; tÞw

where Oðx; tÞw is the estimated time-averaged response of a cell x
in area A to word pattern w, and c 2 [0, 1] is a constant (function
O(x,t) is defined in Appendix A). For the statistical analysis (see
below) c = 0.50 was used; this value was chosen on the basis of
simulation results obtained with the present and previous networks
(Garagnani et al., 2008, 2009b). Following standard definitions in
the literature on auto-associative memories (Braitenberg, 1978a;
Palm, 1990), only excitatory cells were considered to be part of an
assembly.
This definition yields specific numbers of cells per area for each

CA that emerged during learning. For each of the 13 network
instances, per-area CA-cell numbers were averaged over the six
object-related words and over the six action-related words. To statis-
tically test for possible differences in CA topographies between
word types, per-area numbers of CA cells obtained from the 13 net-
work instances were submitted to repeated-measure analyses of vari-
ance (ANOVAs). A four-way ANOVA on the data from all 12 areas was
performed, with the factors ‘extra/perisylvian (ExtraPeri)’ (two
levels: perisylvian = {A1, AB, PB, M1i, PMi, PFi}; extrasyl-
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vian = {V1, TO, AT, M1L, PML, PFL}), ‘frontotemporal (Fronto-
Temp)’ (two levels: frontal areas = {M1L, PML, PFL, M1i, PMi,
PFi}, temporal areas = {A1, AB, PB, V1, TO, AT}), ‘modality-spe-
cific vs. multimodal (ModSpecificity)’ (three levels: primary uni-
modal = {A1, V1, M1L, M1i}, secondary mesomodal = {TO, AB,
PML, PMI} and multimodal = {PB, AT, PFL, PFi}), and ‘Word-
Type’ (two levels: object-, action-related). Furthermore, two separate
three-way ANOVAs were run on the data from the six extrasylvian
and six perisylvian areas (factors ‘FrontoTemp’, ‘ModSpecificity’
and ‘WordType’, as above).

Results

Figure 2 depicts representative examples of CA topographies
emerged during simulated learning of twelve words semantically
grounded in either object (left) or action (right) information. CA cir-
cuits of the two semantic types exhibit similar distributions over the
perisylvian cortex, with the highest CA-cell densities emerging in
the multimodal areas PFi and PB. By contrast, extrasylvian motor
and visual areas appear to exhibit a double dissociation: action-
related word learning yields CAs including cells in lateral premotor
and even primary motor cortex of the model, but weakly developed
or virtually absent in visual areas TO and V1. Conversely, learning
words with an object-related meaning seems to produce circuits
biased towards the visual system. Finally, CA circuits for both
action- and object-related words appear to include comparably large
cell densities in multimodal extrasylvian areas AT and PFL.
Figure 3 illustrates examples of CA-circuit activation dynamics

during two simulated word-recognition episodes. Here, only the
‘auditory’ component (area A1) of a learnt sensorimotor word-
pattern was presented as input to the network, causing the ‘igni-
tion’ of the CA circuit that had emerged for that specific word.
As visible in the figure, this is a near-simultaneous activation pro-
cess that involves several areas of the network. In line with the
differential topographies shown in Fig. 2, object-related word
recognition activity extends well into areas V1 and TO, but not to
M1L, and only marginally to PML, whereas action-word CA igni-
tion reaches M1L and PML, but not V1, and only marginally TO.
Importantly, as CAs for words of either category heavily draw
upon the four ‘central’ (perisylvian and extrasylvian) multimodal
hub areas, simulated object- (Fig. 3A) and action-related (Fig. 3B)
word-recognition processes appear to induce comparable levels of
activity there.
The results of the statistical analysis presented in Fig. 4 fully

confirmed the above empirical observations. The graphs in Fig. 4A
and B plot the number of CA cells per area that emerged with the
training, averaged across 13 different network instances (CA cells
were identified using the definition given in ‘Data analysis’). The
four-way ANOVA run on the data from all 12 areas revealed a main
effect of ModSpecificity (F2,11 = 2345, P < 0.001), with generally
more CA cells and therefore higher assembly-cell density in the
multimodal than in the secondary mesomodal (t12 = 48.9,
P < 0.001), and in the secondary than in the primary unimodal
(t12 = 14.6, P < 0.001) areas; in addition, a highly significant inter-
action of the factors ExtraPeri, ModSpecificity, FrontoTemp and
WordType (F2,11 = 137.6, P < 0.001) emerged, confirming that
CA topographies (i.e. the distributions of their neurons over the
areas) differed between word types. As the distinction between
peri- and extra-sylvian areas had a significant influence here, topo-
graphical word-type effects were further investigated separately for
the perisylvian core language areas and the extra-sylvian ones. The
three-way ANOVA run on the data from the perisylvian areas did not

provide strong evidence for word types differences across areas
(although the respective interaction of topography with word type
approached significance: F2,11 = 3.05, P = 0.066). In contrast,
extrasylvian areas revealed a highly significant interaction of the
factors FrontoTemp and ModSpecificity with WordType
(F2,11 = 290, P < 0.001), showing semantic word-category differ-
ences in CA topographies in ventral temporo-occipital and dorsolat-
eral frontal areas. There was also a main effect of ModSpecificity
in the perisylvian (F2,11 = 1345, P < 0.001) as well as in the
extrasylvian (F2,11 = 2549, P < 0.001) areas, analogous to that
revealed by the four-way ANOVA.
Further, the significant topographic differences between the cir-

cuits of action- and object-related words in extrasylvian model areas
were explored. Bonferroni-corrected planned comparison tests (for
12 comparisons, critical threshold P = 0.0042) confirmed that larger
numbers of cells in V1 and TO were part of circuits for object-
related words than for action words (t12 > 8.7, P < 0.001), whereas
the opposite applies to M1L and PML (t12 > 8.96, P < 0.001). Extra-
sylvian multimodal model areas AT and PFL, which serve as main
hubs for visual, auditory and motor information, did not show sig-
nificant differences between CA types after correcting for multiple
comparisons (AT: t12 = 1.92, P = 0.079; PFL: t12 = 2.88,
P = 0.014, n.s. after correction). Analogous post hoc t-tests investi-
gating possible semantic category differences in the perisylvian areas
(Fig. 4A) were all not significant (t12 ≤ 1.5, P > 0.13 across all six
areas).
Last, the impact that the relative amount of congruent visual or

motor information provided during word acquisition – or, equiva-
lently, that the variability in the semantic input – had on the
emerging topography of the word circuits was examined. Figure 5
plots the resulting object- and action-word CA distributions as a
function of the percentage of learning trials in which the semantic
pattern normally associated with a word was replaced by a random
one. In line with the results obtained when 100% of the trials
included semantic input (data plotted in Fig. 4), post hoc t-tests
revealed that, for all conditions, word-category specificity emerged
in primary and secondary extrasylvian areas (t12 > 7.0, P < 0.0005,
still significant after correcting for 18 multiple comparisons), with
the exception of the 50% case, in which the CAs of the two word
types did not differ after application of a conservative threshold
(t11 < 3.8, P > 0.003 across all areas, n.s. after correction). More-
over, no significant differences between categories emerged in the
two extrasylvian hubs AT and PFL in any of the conditions
(t12 < 3.2, P > 0.009 for all three conditions and two areas, n.s.
after correction), or in the perisylvian areas (t12 < 1.8, P > 0.11
across all areas and conditions). These results show that, although
inconsistent learning reduces the efficacy of semantic circuit forma-
tion, the principal topographical differences indexing category spe-
cificity tend to persist.

Discussion

The present model provides a neurobiological explanation for the
emergence of category-specific effects in modality-preferential cor-
tices, as well as the consistent activation of multimodal ‘semantic
hub’ areas, as observed in the brain during semantic processing. In
our neuroanatomically inspired model of perisylvian and extrasyl-
vian fronto-temporo-occipital cortex, the distinct category-specific
and category-general functional behaviours emerged spontaneously
in different areas as a consequence of the learning process, in partic-
ular, of the simulated semantic grounding of words in information
about their referent objects and actions. As discussed below, this is
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explained by the different topographies of the emerging representa-
tions, i.e. the semantic circuits, which, in turn, are determined by
the underlying neuroanatomical connectivity structure, Hebbian
associative learning mechanisms at work therein, and sensorimotor
patterns driving word acquisition and semantic grounding processes.

Semantic hubs vs. category specificity

In the past, semantic processing has been attributed by some to a
symbolic system dedicated to processing conceptual information
related to words and symbols (Collins & Loftus, 1975; Potter,

Fig. 2. Distributions of cell assembly (CA) circuits emerging in the model during simulation of word learning in the semantic context of visual perceptions
(left-hand side) and actions (right-hand side). Results from a single instance of the network architecture presented in Fig. 1B are shown. Each set of 12 squares
depicts the distribution of ‘cells’ of one specific CA across the 12 network areas. Each white pixel in a square indexes one CA cell. CAs for object-related
words extend into higher and primary visual cortex (V1, TO, but not M1L), linking information about spoken word forms (perisylvian pattern) with information
from the visual modality (neural pattern in V1). Network correlates of action-related words extend into lateral motor cortex (M1L, PML, but not V1), thus
semantically grounding words in information about actions. Note that, on one occasion, this specific network instance failed to learn the association between
spoken word-form and corresponding meaning (see word-related CA #11, which does not reach into area M1L).
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1979; Ellis & Young, 1988). However, neuroimaging and neu-
ropsychological evidence implicating the involvement of several
different areas in semantic processing casted doubts on the exis-
tence of a single ‘amodal’ meaning centre, suggesting, instead,
the presence of several multimodal hubs, located in higher-asso-
ciation areas of anterior-inferior-temporal (Patterson et al., 2007),
middle-temporal (Price, 2000), inferior-parietal (Binder & Desai,
2011) and prefrontal cortex (Bookheimer, 2002; Devlin et al.,
2003). At the same time, a growing number of neuroimaging and
patient studies (e.g., Warrington & Shallice, 1984; Kemmerer
et al., 2012) lend support to a theory of word meaning grounded

in the perception and action systems of the brain (Lakoff &
Johnson, 1999; Pulverm€uller, 1999; Barsalou, 2008; Pulverm€uller
& Fadiga, 2010; Binder & Desai, 2011; Glenberg & Gallese,
2012). In particular, evidence confirms the existence of links
between word-form circuits in perisylvian language areas and cor-
responding semantic information in extrasylvian modality-preferen-
tial sensorimotor ones: action-related words (such as ‘grasp’ or
‘kick’) spark activity in lateral and superior motor and premotor
cortex (Martin et al., 1996; Rizzolatti & Craighero, 2004; Aziz-
Zadeh et al., 2006; Pulverm€uller et al., 2009; Kemmerer & Gon-
zalez-Castillo, 2010), while semantic processing of visually-related

Fig. 3. Activation spreading in the network during simulated word recognition. Representative snapshots of network responses to stimulation of A1 with the
‘auditory’ component of a learned object-related (A) and action-related (B) word (see CA #1 and CA #9 in Fig. 2, respectively); each set of 12 ‘squares’ cap-
tures the network’s instantaneous activity. Cell-activity levels are indicated by brightness of pixels; letters indicate chronological order (not simulation time-
steps). For ease of visual comparison, the original sensory and motor patterns that the network was trained with are reported in the top-right snapshots (frame
‘e’) of both (A) and (B). The pattern reconstruction is partial and strongly involves visual areas in (A) and motor areas in (B). See main text for details.
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symbols (such as colour, object or animal words) produces activ-
ity in specific visual areas of the ventral temporo-occipital stream
(Damasio et al., 1996; Martin et al., 1996; Pulverm€uller & Hauk,
2006; Martin, 2007; Simmons et al., 2007; Carota et al., 2012).
The evidence for both category-specific and category-general
semantic areas pleads for a unifying neural model of early lan-
guage acquisition, able to explain the spontaneous emergence of
both in the cortex as a consequence of word learning and seman-
tic grounding. Based on the present simulation results, such a
neurobiological account is proposed below.

A new integrative model of semantic-category specificity and
hubs

First some basic principles of spontaneous CA development, useful
in the subsequent explanations, are introduced.

In networks that implement rich auto-associative connections
between neurons along with Hebbian learning, constantly stimu-
lated neurons have the tendency to strengthen their connections to
cells they are linked to, so that, with time, larger and larger CAs
develop (Doursat & Bienenstock, 2006). However, the spontaneous
tendency of stimulated CAs to grow may be offset (or partly lim-
ited) by the specific features of a network, such as the density,
extent and reciprocity of synaptic projections; in particular, sparse,
patchy and topographic (as opposed to ‘all-to-all’) connectivity, as
implemented here, makes CA growth harder. The presence of uni-
form white noise (simulating baseline neuronal firing) also has an
effect on CA development: as random noise de-correlates activity
between any pair of cells, its net effect is to weaken all synaptic
weights in the network, thus generally counteracting CA expansion.
Finally, given that CA formation is a consequence of synaptic
strengthening driven by Hebbian associative learning, the ‘degree’
of correlation between the patterns of activity that co-occur in two
or more connected areas is a critical factor for determining whether
an input-specific CA circuit linking such patterns will or will not
emerge in the network. (Note, in this context, that the presentation
of uncorrelated, random activity patterns to the fourth, ‘non-partak-
ing’ primary area during the network’s training specifically hin-
dered the growth of CA circuits into these systems; as discussed
below, this was crucial for the development of category-specific
circuit topographies.)
As shown by the model simulations, learning the meaning of

action- or object-related words in the context of grounding motor
activity or sensory input leads to the formation of input-specific
lexico-semantic CA circuits in the cortex. These circuits bind the
‘lexical’ representation of a word – which links articulatory and
acoustic-phonological activity patterns in M1i and A1, related to
spoken word form production and perception, respectively – with a
perceptual or a motor schema circuit reaching into primary visual or
motor areas (V1 or M1L; Fig. 1A and B). Because of the absence of
direct white-matter tracts between these modality-specific primary
cortices, however, the word-related circuits emerge as widely
distributed over primary (where the driving activation is present),
secondary, and intermediary ‘relay’ areas, through which waves of
correlated activity travel during learning. Hence, such multimodal
convergence areas and their long-distance cortico-cortical
connections play a major role in binding phonological/lexical and
semantic information, with PB and PFL being especially relevant for
action-related words, and PFi and AT for object-related ones
(Fig. 1B).

Explaining category-specific effects in modality-preferential areas

The emergence of distributed CA circuits follows directly from the
principles of spontaneous CA growth and the presence of correlated
patterns of activity in different sets of primary sensorimotor areas.
Depending on the semantic category of the word being learned, differ-
ent CA circuits exhibiting different distributions across modality-pre-
ferential cortices develop. In particular, CA topographies are biased
towards the motor system for action-related words grounded in motor
execution, and towards the visual system for object-related words
grounded in visual perception. Hence, these areas will exhibit cate-
gory-specific effects during word processing across different tasks
(e.g. word recognition and passive listening) because the associated
semantic circuit parts are reactivated along with the spoken word-form
representations. A more precise and detailed explanation follows.
Learning the meaning of object and action words may result from

the presence of correlated patterns of activity in two different sets of

Fig. 4. Average distributions of cell assemblies (CAs) emerging in 13
instantiations of the 12-area network architecture during simulation of word
learning in the semantic context of actions and visual perceptions. Bars show
average numbers of CA neurons per area (or ‘CA-neuron densities’) for
object- (dark grey) and action-related (light grey) word representations; error
bars indicate standard errors over networks. (A) The extrasylvian areas,
whose cells can be seen as circuit correlates of word meaning, show a double
dissociation, with relatively more strongly developed CAs for object- than
for action-related words in primary and secondary visual areas (V1, TO), but
stronger CAs for action- than for object-related words in dorsolateral primary
motor and pre-motor cortices (PML, M1L). Note the coexistence of symbolic
CA circuits having comparable densities for either semantic category in the
multimodal ‘hub’ areas AT and PFL. (B) Data from the six perisylvian areas,
whose cells can be seen as circuit correlates of spoken word forms, do not
show category-specific effects.
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three primary sensorimotor areas: V1, M1i, A1 for object-, and
M1L, M1i, A1 for action-related words. This leads to the emergence
of strongly-connected distributed word-related CA circuits joining
together the neurons consistently activated by these sensorimotor
patterns; however, because of CA growth principles, the emerging
circuits do not extend to areas where neural activity exhibits a low
degree of correlation with such patterns, i.e. primary hand-motor
area (M1L) for object-, and primary visual cortex (V1) for action-
related words (during training these areas were stimulated with a
different random pattern in each learning trial; see Materials and
methods). Therefore, in primary and secondary visual areas (V1,
TO), densities of object-related word cells become larger than
action-related ones; conversely, CA neuron densities in motor areas
(M1L, PML) are higher for action-related words than for object-
related ones (Fig. 4B).
It should be clarified here that presenting random-noise patterns

to the not-directly-stimulated modality system during training (i.e. to
area V1 for action words, and to M1L for object words) was neces-
sary to prevent the spontaneous extension of all semantic circuits
into both motor and perceptual areas. In fact, in a separate set of

simulations six network instances were trained without presenting
such noisy patterns; the results showed that CAs extended further
into the non-partaking, ‘silent’ arm of the network, eventually pro-
ducing a paradoxical distribution in which action word-circuits
reached also into primary visual areas, and object CAs into motor
ones. This observation confirms the fundamental role of neuronal
noise in preventing excessive CA growth (Doursat & Bienenstock,
2006), and suggests its relevance to semantic grounding processes.

Explaining category-general behaviour of multimodal semantic hubs

The main observation here is that CA circuits for words from differ-
ent semantic categories co-exist within the same semantic hub,
exhibiting comparable strength (number of cells) there. Thus, corti-
cal hubs will show similar levels of activation during recognition/
comprehension of items from any of these categories. In other
words, convergence areas behave like ‘multiple demand’, or
category-independent systems because they house CAs for symbols
of all semantic types. The cortical mechanisms that, in the present
architecture, lead to this result are illustrated below.

Fig. 5. Average distribution of emerging word-related cell assemblies (CAs) obtained for different amounts of semantic information provided as input during
training. Left: data from extrasylvian areas. Note the gradual weakening of CA-circuits exhibited by both word categories for increasing fractions of trials failing
to provide semantic input, ultimately leading (bottom row) to most word circuits not reaching the modality-specific areas. Right: data from perisylvian areas.
CA distributions here are relatively unaffected by the fraction of semantic-information-bearing trials (but note that areas PFi and PB develop smaller numbers of
cells in comparison to data plotted in Fig. 4B).
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First note that the four multimodal convergence areas (AT, PFL,
PB, PFi) are directly connected with each other (Fig. 1B). Due to
the repeated concomitant stimulation of three primary cortices with
correlated sensorimotor patterns, CA circuits develop in three of
these four hubs areas (including PB and PFi, plus AT for object-
and PFL for action-related words). The fourth hub, although not on
the pathway connecting the three relevant primary cortices, is recip-
rocally linked with two other multimodal hubs and therefore
receives substantial input during semantic learning. As in the pres-
ence of adequate conditions constantly stimulated CAs extend to
adjacent areas (see above), the emerging symbolic circuits sponta-
neously grow into the fourth semantic hub. As word-related CA cir-
cuits of both semantic categories extend into both multimodal areas
AT and PFL (Fig. 4B), neurons in both will be active during seman-
tic processing of symbols from either category (Fig. 3).

It should be noted that CA circuits are stronger (i.e. contain more
CA cells) in hub areas, which ‘interface’ between the different
modality systems, than in modality preferential ones (Fig. 4). This
appears to be a general feature of the present type of architecture
(Garagnani et al., 2008; Garagnani & Pulverm€uller, 2013; Pul-
verm€uller & Garagnani, 2014), in which ‘central’ multimodal areas
exhibit on average the highest numbers of synaptic links to other
areas (in terms of connectivity, the highest ‘degree’; van den Heuvel
& Sporns, 2013). To see this, refer to the connections depicted as
arrows in Fig. 1B: primary cortices are linked with only one area,
secondary ones with two, while all multimodal areas have three
incoming/outgoing arrows. Cells with larger numbers of incoming/
outgoing projections have a generally higher probability of being
(randomly) linked to cells that happen to exhibit a correlated pattern
of activity; in the presence of Hebbian learning, this implies a
higher probability to become part of a CA (Garagnani et al.,
2009b). Furthermore, because these areas are the point of conver-
gence of different streams of sensorimotor input, they are likely to
receive more excitatory input than the modality-preferential ones,
and more active cells are more likely to undergo synaptic changes
[see Eqn A5 in Appendix A].
The spreading of activity from the phonological/lexical (perisyl-

vian) part of the CA to the extrasylvian hubs, and from there to the
secondary and primary areas of modality preferential systems, is
taken here to be a model correlate of the cortical processes underly-
ing semantic understanding. In this sense, the above results suggest
that, while modality-preferential cortices certainly contribute to word
meaning acquisition and comprehension (as they enable encoding
and recollection of item-specific sensorimotor information), the
majority of ‘semantic neurons’ emerge in convergence zones, where
phonological and semantic word-circuit parts are bonded. Due to
their role as structural-neuroanatomic connection hubs and integra-
tion points of multimodal activity, such areas end up housing word-
related CAs of all different types, and hence become involved in the
processing of items of all semantic categories. Thus, it is proposed
here that the strong activations that multimodal hub areas often exhi-
bit during semantic processing are the result of the presence of large
numbers of neurons of all semantic circuit types there (which, in
turn, follows directly from neurobiological principles and connectiv-
ity structure).
One might speculate that the convergence zones may also be the

locus where information about different specific referent exemplars
is integrated into a single, conceptual representation (Patterson
et al., 2007). However, as basic visual features of objects falling
under a referential term (or movement trajectories of different action
types) show surprising similarity across instantiations, a role of sec-

ondary and even primary modality-preferential areas in such integra-
tion appears possible. [Note that two synaptic steps – needed to
compute more complex logical operations such as either-or relation-
ships (Kleene, 1956; McClelland and Rumelhart, 1986) – are often
necessary to categorize different exemplars/semantic features under
the same concept; in the current model, such integration would only
be possible in higher-order areas. However, here only one excitatory
layer per area was implemented; this is a modelling simplification,
as several neuronal steps are actually possible within the six cortical
layers of each local neuronal cluster (Braitenberg & Sch€uz, 1998).
With several synaptic steps in each area, either-or and similarly
complex computational integration would be possible even in pri-
mary fields.] Previous simulations indeed demonstrated the ability of
a similar (six-area) architecture to spontaneously ‘merge’ different
overlapping CA circuits into a single one; this is because correlation
learning tends to omit variable information and strengthen common
features. This phenomenon, however, depended on the amount of
overlap between the input patterns, as well as on the specific learn-
ing rule adopted (Garagnani et al., 2007, 2009b), factors that were
not the focus of the present investigation.
It should be emphasized that the ability of the model to develop

strong symbolic CA circuits linking up phonological (perisylvian)
and semantic (extrasylvian) circuit parts persists if the semantic pat-
tern is absent in up to 33% of the learning trials (Fig. 5). With 50%
of missing trials, the category-specific nature of the emerging cir-
cuits only persisted as a trend, which fell victim to conservative cor-
rection for repeated statistical testing. This result demonstrates not
only the network’s robustness to acquire the meaning of an action
or object word even when congruent visual or motor activation is
missing (as it often happens in reality), but also the tolerance of the
architecture to an increase in the variability of the semantic input (in
the simulations, decreases in the fraction of semantic-information-
bearing trials were reflected by corresponding increases in the pro-
portion of random vs. meaningful patterns presented to the relevant
primary area in association with each individual word).
As mentioned in ‘Semantic hubs vs. category specificity’, one of

the main contributions of this model is to explain the emergence
and topography of areas for category-specific and category-general
semantic processing. If the mapping of model- to brain-areas pro-
vided in Fig. 1A is, in spite of its coarseness and simplified struc-
ture, appropriate in relevant aspects, the topography of the emerging
word-circuit distributions (Fig. 4) and the corresponding activation
patterns observed during simulated word recognition (Fig. 3) should
match, to a degree, the patterns of brain activity observed experi-
mentally during semantic processing. To enable a direct comparison
of simulated and real brain responses, and assess the level of spatial
accuracy of the mapping proposed, Fig. 6 reports the cortical areas
identified by the model along with examples of phonological, cate-
gory-general and category-specific semantic activations as revealed
by recent functional magnetic resonance imaging studies. In particu-
lar, Fig. 6B (adapted from Saur et al., 2008) shows the different
brain systems activated by two different language tasks, thought to
indicate phonological (top) and semantic (bottom) brain processes.
Note that the areas found active in the ‘phonological’ contrast (repe-
tition of pseudowords compared with words) are mainly perisylvian,
whereas the ‘semantic’ contrast (listening to normal sentences com-
pared with meaningless pseudo sentences) reveals some prefrontal
and superior temporal activity along with dorsolateral prefrontal and
anterior to middle temporal activity (PFL, AT), also reaching into
the parietal cortex. These systems exhibit a substantial degree of
overlap with the perisylvian (phonological/lexical) and extrasylvian
(semantic) systems of the model, respectively (see caption for
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details). Figure 6C (adapted from Pulverm€uller et al., 2009) reports
patterns of activation induced by the processing of: (1) different
word types (leftmost column); and (2) words from three specific
action-related semantic categories (columns 2–4). Action-related
words specifically activate modality-preferential superior and lateral
motor areas; note, in particular, that the major cluster activated by
arm/hand words (column 3) corresponds to two model areas (PML,
M1L) where neuron densities of action-related symbolic circuits
were enhanced in a category-specific manner (see Fig. 4A).

Model limitations, future extensions and predictions

Like any model, the present neural architecture makes a number of
simplifying assumptions, and is therefore limited in several ways.
Firstly, the connectivity realised includes just a subset of the links
known to exist between the relevant cortices. In fact, the neu-
roanatomy of both the auditory and visual (as well as prefrontal)
cortices is much more complex than that realised here (Felleman &
Van Essen, 1991; Kaas & Hackett, 2000; Petrides & Pandya, 2001,
2009; Vincent et al., 2007; Rauschecker & Scott, 2009; for a recent
discussion on perisylvian connectivity, see also Garagnani & Pul-
verm€uller, 2013). It is important to emphasize, however, that there
is good experimental evidence for the existence of all links that the
model implements (see ‘Network structure and connectivity of the
simulated brain areas’). The choice of deploying a network imple-
menting only a minimal set of links can be justified on the basis of
practical as well as methodological considerations: besides the need
to keep simulation time within acceptable ranges, starting with a
‘light’ network structure is motivated by the observation that the
introduction of more connections should preserve any CA circuits
already emerging in the basic version, with the possible additional
effect of making such representations more strongly connected and
therefore more stable. This hypothesis is supported by previous sim-
ulations (Garagnani et al., 2008; Pulverm€uller & Garagnani, 2014).
Nevertheless, while an ‘Occam’s razor’ strategy is appropriate for a
proof-of-concept study like the present one, some of the results
obtained here may be the consequence of such simplification; further
simulations are necessary to investigate emergence, distribution and
dynamics of CA circuits in networks implementing richer connectiv-
ity and additional areas (see below).
Secondly, in real situations, learning the meaning of object and

action words might involve the concurrent presence of correlated
activity in motor as well as visual areas (Pulverm€uller, 1999; Pul-
verm€uller & Fadiga, 2010). For example, when acquiring the mean-
ing of the word ‘grasp’ while performing grasping actions,
correlated activity is likely present not only in language and motor
systems but also in the ventral visual ‘what’ stream (e.g. if the same
object is being repeatedly grasped; Ungerleider & Mishkin, 1982;
Mishkin et al., 1983; Ungerleider & Haxby, 1994), as well as in the
dorsal parieto-occipital visual ‘where’ stream (Jeannerod et al.,
1995; Arbib, 1997; Kiefer & Spitzer, 2001), not modelled here. The
main target of the present study – to differentiate and explain the
spontaneous emergence of category-specific and more general
semantic mechanisms in the brain – motivated a focus on the
modality that provides the sensorimotor features most relevant for
semantic learning. In this sense, it may be justified to focus on
motor features of actions and visual features of objects: these can be
seen as relatively constant, whereas the visual features of actions
can be quite variable (think of the many different objects that can
be grasped with a power grip), as can the action aspects of many
objects. Still, some items, especially foods and tools, have both pro-
totypical visual features and very specific motor affordances, so that

semantic learning should, in their case, include both visual and
motor patterns (Warrington & McCarthy, 1987; Martin, 2007).
Thus, an important direction for future extensions of the model con-
sists in the addition of parietal areas and the implementation of sen-
sorimotor information that can reflect both phonological and
semantic features of words, symbols, actions and objects.
Although this study aimed to explain aspects of the empirically

documented role of given brain areas in category-specific and -gen-
eral semantic processing, the model was not designed to fit any par-
ticular set of behavioural data related to word comprehension.
(Note, however, that previous simulations with a similar architecture
were used to predict and explain specific brain activation patterns
reflecting the processing of lexical information or the role of atten-
tion in language processing; Garagnani et al., 2008, 2009a; Garag-
nani & Pulverm€uller, 2011). In spite of this, the current neural-
network model may already be capable to replicate and explain
additional behavioural results, for example concerning priming
effects between semantically related stimuli and symbols. There are
at least two ways in which the semantic relationship between words
and concepts could be implemented here: first, by overlap of senso-
rimotor patterns (as for the concepts ‘CUP’ and ‘GLASS’, where
referents have visual features in common; Barsalou, 1999); second,
by combination, i.e. co-activation of different CA circuits. Stimula-
tion overlap leads to overlap in the CA circuits, providing a putative
basis for semantic feature overlap, as assumed in semantic feature
theories (Katz & Fodor, 1963). Co-activation of CAs will, in the
presence of Hebbian learning, strengthen existing links between
them, leading to their association; this could capture basic combina-
torial semantic relations between words, as assumed by distribu-
tional semantic theories (Collins & Loftus, 1975; Landauer &
Dumais, 1997).
Another simplifying assumption of the model that begs for further

extensions consists of simulating one action (and, likewise, object)
as one static motor (visual) activation pattern, whereas, realistically,
a fine-grained structure of more or less prototypical variants might
have been desirable (note, however, that the presence of random
noise in all areas, overlaid to the input patterns during learning, cap-
tures, to some extent, this variability). Similarly, the acoustic-phono-
logical and articulatory-phonological patterns presented as input to
the A1 and M1i areas were fixed, and did not mimic the natural
variation in sound categories observed in real speech. Such variabil-
ity could be introduced in the simulations by replacing a single
input pattern with a set of partly-overlapping instances, obtained by
random variation of the same prototype. As mentioned earlier, partly
overlapping input patterns may lead to the emergence of a ‘joint’
CA circuit, merging the different CAs into a single one. Whether
this will happen, however, depends not only on the degree of over-
lap, but also on the synaptic plasticity rule adopted, as well as other
network parameters, including noise level and density and width of
cortico-cortical projections (see also Garagnani et al., 2008, 2009b
for a discussion). Further simulation studies systematically manipu-
lating features of the input patterns are needed to assess more thor-
oughly the model’s ability to handle additional variability and
account for key linguistic effects related to semantic processing.
It should be noted that while standard psycholinguistic models

define a priori different layers as having different linguistic func-
tions (phonological, lexical, semantic; Dell et al., 1999), in the pre-
sent simulations phonetic/phonological and semantic-referential
information is co-presented to primary areas, and lexico-semantic
circuits emerge as a result of learning. Therefore, the network devel-
ops internal lexico-semantic representations spontaneously, accord-
ing to neurobiological principles known to govern brain function.
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This approach is seen as explanatory and an improvement upon a
priori defining the function of the different network’s layers. The
following mapping between linguistic levels and network parts
exists or emerges here: articulatory and acoustic phonetic/phonologi-
cal features are implemented in areas M1i and A1, semantic features
in M1L and V1, and lexico-semantic symbolic representations are
distributed circuits spanning the entire network.
The results of the simulations enable us to make critical predic-

tions about (and/or explain) the different extents of involvement of
relevant multimodal, secondary and primary cortices during acquisi-
tion and processing of novel object- or action-related words; these
predictions can be tested in (and inspire the implementation of)
novel neuroimaging experiments. For example, the model results
lead us to predict that none of the perisylvian areas should show
significant category-specific effects (Fig. 4A), i.e. object- and action-

related word circuits should not exhibit differences in their perisyl-
vian distribution. This is not a trivial consequence of the fact that
the two word types did not exhibit systematic differences in their
auditory-articulatory forms; in fact, the training process involved
asymmetric stimulation of the network, with triplets of correlated
patterns being presented to three of the four primary areas of the
model (see ‘Simulating semantic symbol grounding’) – indeed, this
asymmetry drives the resulting CA-cell distribution in the extrasyl-
vian areas exhibited by the two semantic categories. In view of this,
one might have expected the presence of asymmetries in the perisyl-
vian distributions (as well as in extrasylvian ones). Second, the net-
work predicts the emergence of more ‘semantic’ CA neurons in
secondary (extrasylvian) areas than in primary ones (PML > M1L
and TO > V1). This unexpected result can be explained in terms of
CA growth principles, whereby the larger numbers of CA cells that
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leg/foot word
(“kick“)

arm/hand word
(“pick“)

A

C

B

Fig. 6. Comparison between simulated areas/processes and foci of real cortical activations as observed during language processing tasks. (A) The postulated
mapping of model areas onto specific cortical regions (repeated from Fig. 1A for ease of comparison). Note the ‘nesting’ of the smaller perisylvian lexical/
phonological areas (A1, AB, PB, PFi, PMi and M1i) within the larger extrasylvian semantic one (V1, TO, AT, PFL, PML and M1L). (B) Cortical areas activated
by ‘phonological’ (top – repetition of pseudowords compared with words) and semantic-comprehension (bottom – listening to normal sentences compared with
meaningless pseudo sentences) tasks (adapted from Saur et al., 2008, their Fig. 1, � 2008 National Academy of Sciences, USA). In the repetition task, stimuli
consisted of 60 German words and 60 meaningless pseudowords. In the comprehension task, stimuli consisted of 90 well-formed German sentences [e.g. ‘der
pilot fliegt das flugzeug’ (the pilot flies the aeroplane)] and 90 meaningless pseudo sentences (e.g. ‘ren simot plieft mas kugireug’). Note the strong activation
of the model’s category-general semantic hubs (PFL, AT) along with other extrasylvian areas produced by the comprehension task (red areas) but not by the rep-
etition task (blue areas), which, instead, activates mostly perisylvian areas. Also note the approximate nesting of red areas within blue ones. (Parietal areas were
not modelled in the present study.) Activations are overlaid as maximum intensity projections (x, 70–20) on a canonical brain; statistical threshold was set at
P < 0.001, uncorrected. (C) Results of cluster analysis (from Pulverm€uller et al., 2009) revealing activation clusters common to different word types (leftmost
column) and activations produced by different semantic word categories (other three columns). Stimuli consisted of five matched sets of 50 English words from
five semantic categories: arm/hand-, face/mouth- and foot/leg-related action words, plus form- and colour-related words. Subjects were instructed to attend to all
stimuli flashed on the screen and to silently read the words. The analysis contrasted activation patterns elicited by individual word categories (each tested against
a control condition of matched meaningless symbol strings) with each other and with those activations shared by combinations of semantic categories. While
general lexico-semantic circuits shared by different word types appear circumscribed to multimodal hub PFi, clusters produced by action-related words extend
(somatotopically) to modality-preferential areas of the model – in particular, note the precise overlap between arm/hand activation and category-specific model
areas PML/M1L (adapted from Pulverm€uller et al., 2009, with permission).
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multimodal hubs develop (for the reasons discussed earlier) lead to
the recruitment of more CA cells in the nearby (directly connected)
secondary areas than in the non-adjacent primary ones. Third,
according to the present modelling results, we would not predict cat-
egory-specific activity in semantic hubs. Category effects should
therefore only emerge where hubs interface with the ‘secondary’
semantic areas delineated in the model. Further precise predictions
about the spreading and time course of semantic activation can be
made, for example for word recognition tasks (Fig. 3), and related
to empirical results (Moseley et al., 2013; Shtyrov et al., 2014). It
should be emphasized, however, that most previous experimental
works showing specificity of cortical areas to semantic categories
used words from natural languages, where the way these items have
been learned cannot be adequately controlled for. In order to prop-
erly test the predictions resulting from the present model, word
learning experiments are needed, in which neuroimaging techniques
with high spatial/temporal resolution are used to reveal emergence,
dynamics and distribution of CA circuits for newly-learned action-
and object-related words. The prediction that action-semantic circuits
reach into (and therefore their activation should spark) the premotor
and primary motor cortex is in line with a number of experimental
studies (Hauk et al., 2004; Tettamanti et al., 2005; Kemmerer et al.,
2012; Shtyrov et al., 2014). However, evidence for the activation of
the primary visual cortex during object-related word processing
(Martin et al., 1996; Pulverm€uller et al., 1999) is somewhat sparse,
as most category-specific differences have been seen in more ante-
rior temporal cortices. Thus, in future experiments testing the pre-
sent simulation study’s predictions it will be crucial to examine in
detail visual cortex activation to specific object-related symbol cate-
gories.
We conclude on a speculative note. Recent comparative neu-

roimaging studies have confirmed that higher-order (especially,
prefrontal, inferior parietal and temporal) association cortices have
expanded disproportionally in comparison to primary areas in
human brain evolution (Avants et al., 2006; Van Essen & Dier-
ker, 2007; Rilling, 2014). As observed earlier, due to the underly-
ing network connectivity, the multimodal hub areas of the model
spontaneously developed higher CA-cell density than primary
(and secondary) ones. If the ability of the brain to store sets of
symbol-to-meaning associations relies on the cortex’s capacity to
develop distinct CA-circuits that link up specific sensory and
motor patterns, an increase in the size of these areas could have
represented a crucial evolutionary advantage, as it would have
enabled formation and storage of larger numbers of associative
circuits while maintaining a low probability of cross-talk between
them. The importance of the relatively larger expansion of
higher-association regions in the human compared with the non-
human primate brain in explaining the emergence of uniquely
human linguistic and cognitive capacities has been postulated in
the past (Deacon, 1997; Fuster, 1997; Preuss, 2004; Binder et al.,
2009; Binder & Desai, 2011). Here, a first, putative, cortical-level
mechanistic explanation for this well-documented evolutionary
trend is offered.

Summary and concluding remarks

Neurocognitive semantic theories propose that word meaning is
grounded in the perception and action systems of the human brain
(Barsalou, 2008; Pulverm€uller & Fadiga, 2010; Glenberg & Gal-
lese, 2012; Pulverm€uller, 2013). Using a novel neurocomputational
model incorporating basic features of cortical anatomy and function
of relevant primary, secondary sensorimotor and higher-order asso-

ciation areas in the frontal, temporal and occipital lobes, we
attempt to elucidate the cortical mechanisms underlying such
grounding processes and their consequences at the neurobiological
representational level. In particular, the simulations show that Heb-
bian learning mechanisms at work within specific neuroanatomical
structures are sufficient to support the formation of widely dis-
tributed lexico-semantic circuits exhibiting category-specific cortical
topography and associating auditory-articulatory patterns with
semantic information coming from the senses and the motor sys-
tem. The model is the first computational account able to integrate
key experimental observations about: (1) the presence of category-
specific effects in modality-preferential sensory or motor systems
(Pulverm€uller & Fadiga, 2010; Meteyard et al., 2012); and (2) the
emergence and category-general, ‘across-the-board’ character of a
range of semantic hubs in multimodal frontal, temporal and pari-
etal cortices, consistently implicated in the processing of all types
of meaning (Price, 2000; Patterson et al., 2007; Binder & Desai,
2011).
Linking cellular-level mechanisms with system-level behaviour,

this work offers a novel neurobiological account of conceptual
grounding in the brain able to reconcile and explain existing data
about different roles of distinct cortical areas during word compre-
hension processes, providing further computational evidence in sup-
port of an action-perception theory of semantic learning.
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Appendix A: Full model specification

Each of the 12 simulated areas (Fig. 1B) was implemented as two lay-
ers of artificial neuron-like elements (‘cells’), 625 excitatory and 625
inhibitory, thus resulting in 15 000 cells in total. Each excitatory cell
‘e’ can be considered the network equivalent of a local cluster, or col-
umn, of approximately 25 000 real excitatory cortical neurons, that is
pyramidal cells, while its twin inhibitory cell ‘i’ (Fig. 1C) models the
cluster of inhibitory interneurons situated within the same cortical col-
umn (Wilson & Cowan, 1972; Eggert & van Hemmen, 2000). The
activity state of a cell e is uniquely defined by its membrane potential
V(e, t), representing the average of all the postsynaptic potentials
within neural pool (cluster) e at time t, and governed by the following
equation:

s � dVðe; tÞ
dt

¼ �Vðe; tÞ þ k1ðVInðe; tÞ þ k2gðe; tÞÞ ðA1Þ

where VIn(e, t) is the net input to cell e at time t (sum of all inhibi-
tory and excitatory postsynaptic potentials acting upon cluster e – I/
EPSPs; inhibitory synapses are given a negative sign – plus a con-
stant baseline value Vb), s is the membrane’s time constant, k1, k2
are scaling constants and g(e, t) is a white noise process with uni-
form distribution over [�0.5, 0.5]. Note that noise is an inherent
property of each model cell, intended to mimic the spontaneous
activity (baseline firing) of real neurons. Therefore, noise was con-
stantly present in all areas, in equal amounts.1

The output (transformation function) of an excitatory cell e at
time t is defined as:

Oðe; tÞ ¼
0 if Vðe; tÞOu
ðVðe; tÞ � uÞ if 0\ðVðe; tÞ � uÞO1
1 otherwise

(
ðA2Þ

O(e,t) represents the average (graded) firing rate (number of
action potentials per time unit) of cluster e at time t; it is a piece-
wise-linear sigmoid function of the cell’s membrane potential V(e,
t), clipped into the range [0, 1] and with slope 1 between the
lower and upper thresholds φ and φ + 1. The output O(i,t) of any
inhibitory cell i is 0 if V(i, t) < 0, and V(i,t) otherwise. In excita-
tory cells, the value of the threshold φ in Eqn A2 varies in time,
tracking the recent mean activity of the cell so as to implement
neuronal adaptation (Kandel et al., 2000). Thus, stronger activity
leads to a higher threshold in subsequent time steps. More pre-
cisely,

uðe; tÞ ¼ a � xðe; tÞ ðA3Þ

where x(e,t) is the time-average of cell e’s recent output and a is
the ‘adaptation strength’. For an excitatory cell e, the approximate
time-average x(e,t) of its output O(e,t) is estimated by integrating
the linear differential equation Eqn A4.1 below with time constant
sA, assuming initial average x(e, 0) = 0:

sA � dxðe; tÞdt
¼ �xðe; tÞ þ Oðe; tÞ ðA4:1Þ

Local (lateral) inhibitory connections (Fig. 1C) and area-specific
inhibition are also implemented, realising, respectively, local and
global competition mechanisms (Duncan, 1996, 2006), and prevent-
ing activation from falling into non-physiological states (Braitenberg
& Sch€uz, 1998). More formally, in Eqn A1 the input VIn(e,t) to all
excitatory cells of the same area includes an area-specific (‘global’)
inhibition term kS� xS(e, t), subtracted from the total sum of the I/
EPSPs postsynaptic potentials VIn in input to the cell, with xS(e, t)
defined by:

sS � dxSðe; tÞ
dt

¼ �xSðe; tÞ þ
X
e2area

Oðe; tÞ ðA4:2Þ

The low-pass dynamics of the cells [Eqns A1, A2, A4.1–2] are
integrated using the Euler scheme with step size Dt, where
Dt = 0.5 ms.
Excitatory links within and between (possibly non-adjacent)

model areas are established at random and limited to a local (topo-
graphic) neighbourhood; weights are initialized at random, in the
range [0, 0.1]. The probability of a synapse to be created between
any two cells falls off with their distance (Braitenberg & Sch€uz,
1998) according to a Gaussian function clipped to 0 outside the cho-
sen neighbourhood (a square of size n = 19 for excitatory and n = 5
for inhibitory cell projections). This produces a sparse, patchy and
topographic connectivity, as typically found in the mammalian cor-
tex (Amir et al., 1993; Kaas, 1997; Braitenberg & Sch€uz, 1998;
Douglas & Martin, 2004).
The Hebbian learning mechanism implemented simulates well-

documented synaptic plasticity phenomena of long-term potentia-
tion (LTP) and depression (LTD), as implemented by Artola,
Br€ocher and Singer (Artola et al., 1990; Artola & Singer, 1993).
This rule, which covers both ‘true’ Hebbian co-occurrence (‘what
fires together wires together’) as well as ‘anti-Hebb’ (‘neurons1Inhibitory cells have k2 = 0 (i.e. the noise is generated just by the excitatory cells).
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out of sync delink’) plasticity, provides a realistic approximation
of known experience-dependent neuronal plasticity and learning
(Rioult-Pedotti et al., 2000; Malenka & Bear, 2004; Finnie &
Nader, 2012). In the model, the continuous range of possible
synaptic efficacy changes was discretized into two possible levels,
+Dw and �Dw (with Dw << 1 and fixed). Following Artola
et al., we defined as ‘active’ any link from an excitatory cell x
such that the output O(x, t) of cell x at time t is larger than hpre,
where hpre 2 [0, 1] is an arbitrary threshold representing the mini-
mum level of presynaptic activity required for LTP to occur.
Thus, given any two cells x and y connected by a synaptic link
with weight wt(x, y), the new weight wt+1(x, y) is calculated as
follows:

Typical parameter values used during the simulations are as follows:

Eqn A1 Time constant (excitatory cells): s = 2.5 (simulation time-steps)
Time constant (inhibitory cells): s = 5 (simulation time-steps)
Scaling factor: k1 = 0.01
Baseline potential Vb = 0
Noise scaling factor k2 = 25∙

p
48

Global inhibition strength kS = 65
(during training): kS = 95

Eqn A3 Adaptation strength: a = 0.01
Eqns
A4.1–2

Average output time constant
(for adaptation mechanism):

sA = 10 (simulation time-steps)

Global inhibition time constant: sS = 12 (simulation time-steps)
Eqn A5 Postsynaptic potential threshold

required for synaptic change:
hpost = 0.15

Presynaptic output activity
required for LTP:

hpre = 0.05

Learning rate: Dw = 0.0008

wtþ1ðx; yÞ ¼
wtðx; yÞ þ Dw if Oðx; tÞ[ hpre and Vðy; tÞ[ hpost ðLTPÞ
wtðx; yÞ � Dw if Oðx; tÞOhpre and Vðy; tÞ[ hpost ðLTDÞ
wtðx; yÞ otherwise

8<
: ðA5Þ
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