
BlockyTalky: A Physical and Distributed
Computer Music Toolkit for Kids

R. Benjamin Shapiro

Annie Kelly
University of Colorado Boulder

 Boulder, CO, USA
ben.shapiro@colorado.edu
annie.kelly@colorado.edu

Matthew Ahrens
Tufts University
161 College Ave

Medford, MA USA
matthew.ahrens@tufts.edu

Rebecca Fiebrink
Goldsmiths, University of London

London, SE14 5PP
United Kingdom

r.fiebrink@gold.ac.uk

ABSTRACT
NIME research realizes a vision of performance by means of
computational expression, linking body and space to sound and
imagery through eclectic forms of sensing and interaction. This
vision could dramatically impact computer science education,
simultaneously modernizing the field and drawing in diverse new
participants. We describe our work creating a NIME-inspired
computer music toolkit for kids called BlockyTalky; the toolkit
enables users to create networks of sensing devices and synthesizers.
We offer findings from our research on student learning through
programming and performance. We conclude by suggesting a
number of future directions for NIME researchers interested in
education.

Author Keywords
NIME, computer science education, distributed systems

ACM Classification
• Applied computing~Sound and music computing • Social
and professional topics~Computing education programs

1. INTRODUCTION
Inherent in NIME research is the vision that computational practices
can be rich with creative expression as well as technological
ingenuity. The NIME community investigates and demonstrates how
new computational systems can enable musical expression and
interaction. Though this community has impacted the state-of-the art
of music composition and performance, its innovations have not yet
become a widespread part of computer science education.
 We believe that computing education could benefit in several ways
from integrating topics central to NIME into computer science (CS)
curricula, and from adopting the NIME community’s understanding
of computing as an expressive, creative domain.
 First, computer music is a uniquely strong application domain
through which we could modernize computer science curricula.
Computing education research scholars as well as industry have
bemoaned the absence of contemporary computing topics like
distributed systems and concurrency from computer science
education [15]. Recent standards documents like the ACM-IEEE
Computer Science Curricula 2013 [1] mandate these topics’
inclusion within CS education pathways, but compelling examples of
how to do so are currently lacking. Yet is is rare to find computer
music performances that lack timing-sensitive distributed computing,
concurrency, and networking. Games also have many of these
computational facets, but past research shows that games
disproportionately motivate boys to program [11]. Computer music
offers underexplored potential to motivate people from all
backgrounds to learn computer science [7].
 Next, computer music also offers us a chance to combat pervasive

and insidious misperceptions of computer science and computer
scientists. American students and adults have negative stereotypes of
science and scientists, often believing that they are socially distant,
dangerous, workaholic, peculiar, irreligious, and missing fun in their
lives [12, 14]. And they tend to hold similar stereotypes of computer
scientists [3,10,13]. These stereotypes can be challenged by
educational approaches that bring scientific methods together with
topics that are relevant to youths’ lives and that showcase the wide
range of possible pro-social impacts of STEM, including computing
[10]. Music is often both highly social and creative. CS education
experiences based upon computer music could drastically change
students’ perceptions of computing.
 Integrating music into computer science education may likewise be
helpful in broadening participation in computing, which refers to
increasing the currently anemic participation by women, ethnic
minorities, indigenous people, and the poor in CS. Broadening
participation is one of the foremost goals of the computing education
research community. Integrating computer music into computing
curricula could improve participation both by combatting the
misperceptions described above and by creating more pathways into
computer science—as well as computer music itself—for students
who are already musicians.
 In this paper, we describe the creation of a new distributed and
physical computer music systems-building and performance toolkit
for kids aged 10 and up. We have designed this toolkit to enable
youth to create new digital musical instruments and other interactive
music systems, with the aims of engaging them with a variety of
introductory computing concepts as well as challenging them to think
more positively about the creative potential of computers and their
own ability to do computing. We also describe the outcomes of
several educational activities in which youth have used this toolkit,
and the implications of these outcomes for understanding and
improving education.

2. DESIGN CONSIDERATIONS
We set out to create a toolkit for kids to create computer music
systems that they can use in collaborative performance. We believed
that the toolkit should simultaneously enable users to construct a
variety of physical interfaces (e.g., using different combinations of
sensors), as well as support the combination of different technologies
in distributed systems (e.g., sensors communicating wirelessly with
software sequencers that control sound synthesis algorithms).
 This basic design concept is common at NIME yet different from
any which animates other programming tools designed for youth. For
example, consider Scratch, a hugely popular software system for kids
to use to create games, stories, and animations. It is hugely popular:
185,000 unique users created new Scratch projects in December
2015 [16]. Scratch runs in a browser and enables users to write
expressive programs by dragging pieces of code onto sprites in order
to define their behaviors. Scratch allows users to play sounds and
even to build modest physical interfaces (via MaKey MaKey), but
the sound programming features are much more geared toward
adding sound to games than they are to composing and performing
music. EarSketch [7] is another educational programming

environment, and one that combines music with CS education. It too
is browser-based and enables users to programmatically sequence
and manipulate synthesized sounds and samples. However, it is not
designed for collaborative real-time performances or for using
physical input to shape sound synthesis.
 Though there were aspects of tools like Scratch and EarSketch that
we wished to replicate (e.g., browser-based interfaces, which
drastically reduce the complication of system use in schools), we also
recognized that we would need to borrow heavily from design and
engineering patterns that are common in NIME but that have not yet
been adapted for younger users. As engineers, our goal was to create
the first computer science education toolkit that would adapt core
NIME approaches for young learners. That is, we wanted to create
systems that could use usable by youth 10 years old and older to
create:
• software synthesizer programs that offer real-time control over

their parameters
• sequencers that sequence those synths
• hardware, especially sensors that get information about people

in the world
• networked systems: distributing sensing and sound-making,

but also supporting multiple people making sound together on
multiple devices that can communicate and synchronize.

As educators, we wanted to empower those kids to:
• make choices about hardware design
• write network protocols to link system elements together
• work with constraints in systems that shape their activity, such

as latency in sensing, communication, and synthesis
• experiment with different types of expressive control
• improvise during performance through use of physical inputs

or modification of code.

3. IMPLEMENTATION
Over the past two years we have created and iteratively refined the
BlockyTalky toolkit, which meets all of the above goals.
BlockyTalky is open source and runs on low-cost single-board
computers like the Raspberry Pi. Typically these devices are
equipped with “shields” or “capes” that allow use of child-friendly
sensing hardware (e.g., LEGO Mindstorms sensors).
 Each BlockyTalky device runs a server that provides users a
complete web interface for configuring and programming its
hardware. Drop-down menus enable users to declare what kinds of
sensors are connected to which input port and the system provides
real-time sensor readings to help users to plan, monitor, and
troubleshoot their designs (see Figure 1).

Figure 1 Input selection menus with real time sensor readings

 A variety of programming blocks enable users to define musical
motifs (including synthesized notes, samples, and effects), to send
messages between devices, and to create event-handlers for inputs
received from physical sensors or messages received over the
network. The programming model assumes that users will typically
compose and enact performances using several devices at once, with
some devices handling sound synthesis and others handling physical
inputs from users; user-created asynchronous messaging protocols

coordinate activity across these devices. Figure 2 shows a typical
configuration and what code for that configuration looks like.

Figure 2 Common project architecture and code

 Users can configure BlockyTalky synthesizers to synchronize their
clocks to one another with a single programming block (Sync my
clock to Foo). Then they can use wait for blocks to specify the timing
of note synthesis or sample playback; common values of wait for
(e.g., a downbeat or the first note in a 4-count) across multiple
synthesizers result in synchronized playback.
 The block-based programming interface is implemented using
Google’s Blockly toolkit [9]. Users’ block programs are transpiled
into a textual Domain-Specific Language (DSL). The DSL provides
convenient abstractions around common complexities for physical
computing and network programming. For example, the block
program:

becomes

when_sensor "PORT_1" == 1 do
 send_message(“tickle", "elmo”)
end

The when_sensor macro handles management of state that is
necessary to detect and dispatch events, while the send_message
function handles peer discovery, serialization, and transmission of
messages over UDP.
 This functionality is implemented in JavaScript and the Elixir
functional programming language, which runs on the Erlang virtual
machine. Erlang’s actor-based architecture enables us to quickly add
new capabilities to the system, such as support for new hardware,
networking protocols, and user interfaces. The Phoenix web
framework (which serves both static web content and streaming
realtime communication over WebSockets) enables us to provide live
information to users about device and sensor states and network
communications.

4. EXPERIENCES WITH YOUTH
We have used BlockyTalky with youth in a variety of different
educational settings, including two multi-week computer music
summer camps, short 1–2 hour workshops, and in 5- to 10-
minute interactions during outreach events.
 The summer camps were located on the premises of existing
neighborhood-based youth-serving organizations in a large
Northeastern U.S. city, and were offered as part of those
organizations’ existing summer activities. We chose to do our
research in conjunction with these community partners in order
to maximize the likelihood of including low-income minority
youth within our study (low-income parents frequently report
difficulty getting their children to the university campus) and
involving participants who already have social relationships
with one another (facilitating creative collaboration). Each of
the summer camps lasted about twenty hours in total. Both

camps were taught by university faculty and students, with
logistical support from the community organizations. Both
camps were structured such that participants spent their time
working toward a culminating computer music performance,
with the university-based researcher-teachers leading tutorial
activities on how to use the BlockyTalky system and offering
just-in-time support as students had questions or ran into
obstacles.
 We documented camp sessions exhaustively, placing
numerous cameras throughout the room to capture student
conversation on audio and video, and configuring BlockyTalky
to retain time-stamped copies of all saved changes to students’
code.

4.1 Camp One
When we launched the first camp—which primarily involved
African-American 11–13 year olds—we did not yet know what
aspects of our computer music approach would be most and
least challenging for participants. We chose to implement a
lightweight curriculum, and then use our observations of
student participation to guide curriculum design for subsequent
iterations. Accordingly, on Day 1 we presented demos of
instrument designs to the campers, then orchestrated whole-
class activities around representing musical structures
symbolically (e.g., clapping out rhythms and drawing them on
paper). On Day 2 we handed out pre-made demo systems and
encouraged students to modify them to taste. Then, beginning
on Day 3, we told students to tinker and play with the
BlockyTalky toolkit, creating systems to play songs that they
liked. Then, as the remaining 6 days of camp progressed we
increasingly urged students to start creating sets of systems that
they could use in group performances. As they did so, we
provided just-in-time support in response to problems they
encountered or questions they had. The camp concluded with a
performance day, wherein all student groups demonstrated their
work. Students created a variety of projects, including:
• A 3-student Star Wars Cantina Band, including two electronic

trumpets and a bass line. Each trumpet had 3 buttons, used to
choose a note pitch, and a sound-volume sensor, used as a
breath sensor so that the instrument would only make sound
when the user blew into it. Each trumpet communicated over
the network with a shared synthesizer. However, the 11–12-
year-old African-American boys who built this system did not
use the system’s synchronization functions, and so their
ultimate performance was disjointed.

• An interactive karaoke-like machine shaped like a clarinet that
played all of the verses to John Legend’s All of Me, and
accompanied the girl who built the device while she sang the
song and controlled the device by pressing buttons to make it
change verse.

The All of Me machine was the only one of the five student
projects that used programmatic features to synchronize
multiple synthesis tracks. Follow-up cognitive clinical
interviews [8] with students revealed that they were confused
about how the synchronization aspects of the BlockyTalky
system worked, even while they understood the distributed
nature of the tools.
 We surveyed students about their experiences, asking them to
write free-form responses to three prompts: 1) The best thing
about this workshop was… 2) I would improve this workshop
by… 3) Describe, list, or draw 3 things that you learned at this
workshop. Their responses (n=10) touched on a number of
facets of the project. Through Open Coding [4] we identified
several common themes: Making, Music, Programming,
Learning, Products, and Social Interaction. Making,
Programming, and Music were, by far, the most common
themes in students’ responses (two-thirds of students’ responses

included at least one of these themes). For example, in response
to Question 1 (The best thing was...), four surveys mentioned
Making (e.g., “That we got to use legos to build any musical
instrument that we wanted to”), two mentioned Programming
(e.g., “learning how to program”), and three mentioned Music
(e.g., “Getting my instrument to play the song it took a while
but it turned out to be a great product”). The small number who
mentioned music surprised us, given the content of the
workshop. Responses to Question 2 (I would improve this
workshop by...) were the most variable, with only five (half) of
the responses involving these themes; suggestions included
“adding more motor ports and sensor ports” (coded as about
Making) and “making more programs to fix” (coded as about
Programming). No responses to Question 2 mentioned Music,
and four were left blank or said variations on “I don’t know”. In
response to Question 3 (3 things you learned...), 9 of 10
respondents provided an answer; 8 of those mentioned
Programming and 6 of them mentioned Making.
 In summary, the activities successfully captured the interest
of nearly all participants, and students strongly expressed a
belief that they had learned some programming. All students
were able to create interactive networked musical systems, and
interview participants understood the basic distributed
computation-related learning goals that we hoped they would.
However, we saw no evidence that students understood the
synchronization mechanisms that are part of the system’s
design.

4.2 Camp Two
A year after Camp One, we conducted a second summer
program, this time with first-generation Asian immigrant girls,
ages 11–14. To address the weaknesses we observed in the first
camp, we took a more structured approach in the second camp,
opening all but the last few days of the camp with whole-class
activities, including “CS Unplugged”-style activities wherein
students acted out various computational processes, including
pattern matching and messaging. In the early days of the camp,
we complemented these whole-class activities with small-group
tutorials in how to use the BlockyTalky system, and
encouraged students to tinker with it in order to make small
musical demos (e.g., one group used motors to move an egg-
shaker back and forth while using another motor to strike a
chime). These small projects responded to students’ desires to
combine computer music with acoustical instruments, and
helped them to learn the BlockyTalky programming
environment.
 After several days of this, participants began the process of
developing these systems by authoring project visions during
the participatory design activity described above. These vision
posters described what songs the girls would program, the girls’
roles in the performances, what sensors they would use, and
what the role of each team member would be in the
performance. The next day, students formalized these posters
into project specifications that included drawings of their
planned system topologies, documentation of messaging
protocols, and timelines of their planned performances.
 Camp Two participants designed, programmed, and
performed a wide variety of pieces, including:
• A project by a group of first-generation immigrant girls to play

Flashlight by Jessie J. It consisted of two synthesizer devices,
Synth2 and Synth9, each programmed with a single motif
(Motif A and Motif B, respectively) plus a BlockyTalky
device configured with a single push button. In their
implementation, when the button was pressed the
BlockyTalky would send a message to trigger Synth2 to
play Motif A, then at the end of the motif, Synth2 would
send a message directly to Synth9 to trigger Motif B.

The girls intended to program the two synthesizers to play two
additional synchronized motifs, but ran out of time.

• A system by another group of girls to play See You Again
by Wiz Khalifa. They used two synthesizers, Synth3
and Synth7, together with a BlockyTalky device that
they configured with three push buttons. The girls broke
the song into three parts, an Intro, a Melody, and a Tag,
and programmed motifs for these parts onto the two
synthesizers. They then wrote code on the BlockyTalky
that would send messages to the appropriate synthesizers
to trigger these parts when corresponding buttons were
pressed. They rehearsed a performance sequence of
IMTMTT, in which one student triggered the Intro,
another triggered the Melody, another triggered the Tag,
and another cued each team member on their turn.

 As part of their work building such systems, we have seen
students exhibit impressive evidence of understanding the
relationships between the various system components that
together constitute a distributed system. That is, the students
were able to work backwards from performances that they
envisioned in order to design assemblages of system
components that could serve their expressive goals. We saw
evidence of this in their final projects, in their classroom
discourse, and in artifacts of their project planning activities.
For example, Figure 3 shows how one group of students
sketched a system diagram for one of their projects before
building it, and then documented messages that would be
exchanged between nodes in that system.

Figure 3: System diagram and protocol documentation

 As is evident from the above descriptions, these projects all
involved programming multiple nodes to communicate with
one another and, in two of the three cases, students’ designs
included synchronization across multiple nodes. Because of
these design and implementation details, we believe that this
iteration was more successful than Iteration 1 in enabling youth
to learn about concurrent and distributed computing concepts.
 This assessment of student learning based upon students’
projects is triangulated by interviews we conducted with
students at the end of their participation in the program. These
interviews focused on a card-sort and a story telling exercise. In
the card sort, the girls were challenged to work with peers from
different teams to group cards bearing BlockyTalky-related
vocabulary into whatever arrangements seemed sensible to
them, and then to explain their groupings. Next, we asked the
girls to use the cards to tell stories that made sense to them.
These stories offered us a rich window into students’
understanding not only of the definitions of the vocabulary on

the cards, but how the functional characteristics of the concepts
would be operationalized. For example, one pair of students
wrote the following (card-words in boxes):

This story reflects the two students’ understanding of two key
CS conceptual goals for our project. They described a system
that is composed of multiple nodes, each running a program,
and coordinated with one another via messaging. It is unclear
what the precise meaning of the sentence with
“synchronization” in it is, though it does seem to reflect that the
two students understand the system’s synchronization function
as a way to have a common rhythm across BlockyTalky nodes.
Other students’ stories were similarly sensible.
 We used the same coding scheme as in Iteration 1 to analyze
students’ survey responses (n=10) for this iteration. In response
to Question 1 (The best thing was...), no surveys mentioned
Making, two mentioned Programming (both did so in
conjunction with Music, e.g., “Learning how to code and make
music”), and seven mentioned music (e.g., “putting the song
together”). Two responses were coded as about the Social
Interaction characteristics of the activity (“working with new
people” and “I was able to step out of my shell and
communicate with others. I was also able to work as a team
with other people.”) Question 2’s (I would improve this
workshop by...) responses were again the most variable, with
only four of the responses touching on Music, Making, or
Programming; suggestions included “having all of us work
together and have more time” (coded as about both Pedagogy
and Social), “learning my music notes” (coded as about Music),
and “learning more coding” (coded as about Programming). No
responses to Question 2 mentioned Instruments, and four were
left blank or said variations on “I don’t know”. In response to
Question 3 (3 things you learned...), 9 of 10 respondents
provided an answer; 8 of those mentioned programming and 6
of them mentioned Making. Social factors were also mentioned
here, such as “Team work” and “Collaboration isn’t always
easy.”
 In summary, Camp Two saw a significant improvement in the
richness of students’ system designs, implementations, and
understandings of computational ideas as compared to Camp
One, while maintaining a high level of student positivity about
the experience.

5. CHALLENGES AND SOLUTIONS
5.1 Challenges
Over the course of the many workshops we have run with
youth, we have also learned several lessons that have informed
our iterative design and development practice, and that should
inform future work in this area. Here we describe some of the
challenges we have encountered and how we have addressed
them or plan to address them in the future. The first two
challenges involve leveraging students’ prior knowledge and

skills, an important dimension of any learning environment
design [2], while the latter are more technical in nature.

Challenge 1: Adapting novice musicianship to programming
 Some of our participants had prior experience playing music,
such as through guitar classes at the community center that
hosted Camp One. However, those students found it
remarkably hard to draw upon that prior knowledge in order to
program BlockyTalky. For instance, one pair of boys wanted to
program Deep Purple’s Smoke on the Water, a song they could
sort-of play on guitar. The challenge they faced was in
translating their embodied knowledge of how to play the song
into the symbolic representation needed by the BlockyTalky
system. That is, their knowledge of how to play the song was of
the form of first put your fingers like this, then put your fingers
like that, but the BlockyTalky system expects input in the form
of play a C, then play a G. Resolving this challenge required
teaching staff to translate between finger positions and pitch
names (this case is described in detail in [5]).

Challenge 2: The pop music re-creation trap
 Many students who have participated in our work have been
excited to re-create pop songs that they are familiar with. We
found this to be a double-edged sword: On one hand, it is
motivating to students and provides an easy way to make
something that sounds good even without formal knowledge
about music composition. On another hand, we frequently
found this to be a hugely time-consuming dead-end for
students. They tended to get focused on one-to-one replication
of pop music, and they did not explore re-arrangement or
improvisation around melodies and rhythms in their chosen
songs. Their work focused more on fidelity of re-creation rather
than creative expression. Because re-creations were totally
linear, students doing them tended not to explore programmatic
methods for synchronization of musical motifs that would be
useful in improvisation, thereby limiting their CS learning.
 We have recently begun addressing Challenge 1 and
Challenge 2 through a co-design partnership with two middle
school teachers (one a music teacher, the other a math teacher).
In this work, which is still ongoing, we are creating a computer
music composition and performance curriculum that teaches
students to algorithmically compose melodies, harmonies, and
counterpoint, and through doing so learn about the
mathematical concept of functions and the computational
concept of state machines. Along with the curriculum, we are
adding additional music programming blocks to enable students
to program with finger numbers, rather than explicit pitches
(e.g., play 1, 3, and 5 in C-major). This will enable students to
more easily tinker with melodies at the piano and then translate
them to code, as well as facilitate learning about functions (1, 3,
and 5 can map to different pitches depending upon the key, and
this mapping is a function) and state machines (a simple
classical harmony can transition from a IV to a V but not from
a V to a IV). Students and teachers in two middle schools will
test out this curriculum beginning in late February 2016. We
will evaluate how this approach empowers students to better
understand the melodic structure of songs that they already
know (addressing Challenge 1) and to more creatively explore
musical possibilities for their performances (Challenge 2), as
well as deepen connections between computer music and CS
and math education.

Challenge 3: Latency
 In order to minimize engineering effort, leverage prior work,
and create pathways from our beginner-specific tools into more
general-purpose systems, we have built as much of
BlockyTalky around existing open source software as possible.

Our current iteration of the tools use Sonic Pi for sound
sequencing and synthesis. In general, Sonic Pi works well,
including on the relatively low-end hardware of the Raspberry
Pi. However, Sonic Pi is designed for live coding, not for
performances that involve realtime control over sequencing and
synthesis. It maintains a long buffer in order to avoid skipping.
However, this means that there is often a lengthy delay, up to a
second, between when a user manipulates a sensor and when
the sound they hear changes. This can be confusing to users.
The Sonic Pi project has no concrete plans to address this
problem.
 We also suffer from latency problems caused by our use of
electronics construction materials that are not optimized for
timing. For example, BlockyTalky’s support for LEGO
Mindstorms sensors depends upon using the Dexter Industries
BrickPi shield. The drivers and firmware for the BrickPi
require constant polling of the board in order to detect changes
to input state, an operation that is both slow and power-
intensive (the largest source of power drain in our system).

Challenge 4: Cost
 Our current hardware setup, involving a Raspberry Pi, Brick
Pi, MicroSD card, USB WiFi dongle, and power supply costs
about $169. The LEGO sensors needed to do anything useful
with this add even more cost (a simple push button costs about
$30). This price point is too high for widespread adoption of
our approach.
 We plan to address both of these problems by porting
BlockyTalky to run on the recently released BeagleBone Green
(BBG). The BBG is based on the BeagleBone Black, a board
which is increasingly being used by the NIME community due
to its relatively fast processor (compared to the Pi) and very
low latency I/O co-processors. However, the BBG removes the
Black’s HDMI port in favor of two Grove connectors. The
Seeed Studio Grove platform includes a massive variety of
modular sensors that are well suited for building computer
music devices. BlockyTalky already boots on the BBG, and we
will add support for its Grove ports in Summer 2016. This will
both dramatically reduce cost (<$50/device, plus sensors) and
hardware latency. We will address synthesis latency by
replacing Sonic Pi with a synthesis engine better geared toward
realtime performance, such as ChucK.

5.2 Next Steps
As our work with BlockyTalky progresses, it will increasingly
be necessary to investigate how to enable users to expand on
the system’s built-in capabilities through connection to other
computer music software and hardware. We will soon be
adding support for the OSC protocol to enable this integration.
 We also plan to add support for Bluetooth communication
with the BBC & Microsoft Micro:bit, a low-cost ($7)
programmable board that has an ARM processor, a 5x5 LED
array, accelerometers, and Bluetooth Low Energy. The
Micro:bit offers an unprecedented opportunity to investigate
how youth can create wearables to use to link dance and other
human motion to computer music. We are currently prototyping
this functionality.

6. OPEN QUESTIONS FOR NIME
The BlockyTalky hardware ecosystem is robust, cheap, and
low-latency enough to support a range of rewarding and
engaging music-making activities. The drag-and-drop
programming environment is also a usable tool for kids with no
programming background, provided that they are open to
experimenting with a wide variety of sounds and effects or that
they have the musical knowledge to be able to translate their
ideas efficiently into symbolic representations (e.g. lists of note
names and durations). However, when the educational aims are

to teach about musical instrument building, creative expression,
design, and collaborative music performance—rather than
about procedural programming or musical note reading—might
other modes of software design be better suited to these aims?
For instance, previous work has shown that building new
musical instrument mappings using supervised learning—
providing examples of human motions along with the musical
outcomes to match those motions—can facilitate a more
efficient, satisfying, and embodied approach to design,
(compared to programming) for professional composers [6].
Might such techniques also allow kids to translate their musical
instrument ideas into real systems? Or, might techniques for
symbolic transcription of sung melodies or automatic harmony
generation [17] speed up the process of “writing” programs that
mimic pop songs? Might helping kids easily realize the creative
limitations of mimicry at an earlier stage of their work with
technology encourage them to explore new ideas?
 Setting aside the question of how to embed NIME topics into
computer science education, what should NIME education look
like for youth? How could (or should) music education itself
change to incorporate NIME ideas and practices? The potential
benefits of expanding musical curricula to encompass computer
music topics range from increasing the relevance of music
education to youth who are most excited about musical genres
that rely heavily on digital production practices, to facilitating
music-making by youth with disabilities through bespoke
digital instruments, to making a politically expedient argument
for supporting music education because of its STEM content.
But the risks include suggesting that music education is
valuable only insofar as it aids in teaching “serious” or
“economically important” STEM subjects, or exacerbating
disparities between well-off schools with ample resources to
invest in digital music equipment and those without them. We
are excited about the potential benefits of early NIME
education despite these risks, and one of our research aims is to
engage the NIME community more broadly in these questions.

7. ACKNOWLEDGEMENTS
We thank the National Science Foundation (CNS-1418463), the
NCWIT Acadamic Alliance Seed Fund, and LEGO Education
for funding this work. We also thank our numerous
collaborators, including Elise Deitrick, Joe Sanford, Paul
Lehrman, Elena Cokova, Catherine Gao, Theresa Perry, Aliyah
Mahmoud, Karla Brown, and Ellen Wang.

8. REFERENCES
[1] ACM/IEEE-CS Joint Task Force on Computing Curricula.

2013. Computer Science Curricula 2013. ACM Press and IEEE
Computer Society Press. DOI:
http://dx.doi.org/10.1145/2534860

[2] John D. Bransford, Ann L. Brown, and Rodney R.
Cocking. 1999. How people learn: Brain, mind, experience,
and school. National Academy Press.

[3] Lori Carter. 2006. Why students with an apparent aptitude for
computer science don’t choose to major in computer science.
In Proceedings of the 37th SIGCSE technical symposium on
Computer science education (SIGCSE '06). ACM, New York,
NY, USA, 27-31.
DOI=http://dx.doi.org/10.1145/1121341.1121352

[4] Juliet M. Corbin and Anselm Strauss. 1990. Grounded
theory research: Procedures, canons, and evaluative
criteria. Qualitative sociology 13.1, 3-21.

[5] Elise Deitrick, R. Benjamin Shapiro, Matthew P. Ahrens,
Rebecca Fiebrink, Paul D. Lehrman, and Saad Farooq.
2015. Using Distributed Cognition Theory to Analyze
Collaborative Computer Science Learning. In Proceedings
of the eleventh annual International Conference on
International Computing Education Research (ICER '15).
ACM, New York, NY, USA, 51-60.
DOI=http://dx.doi.org/10.1145/2787622.2787715

[6] Rebecca Fiebrink. 2011. Real-time human interaction with
supervised learning algorithms for music composition and
performance. PhD dissertation. Princeton University,
Princeton, NJ.

[7] Jason Freeman, Brian Magerko, Tom McKlin, Mike Reilly,
Justin Permar, Cameron Summers, and Eric Fruchter. 2014.
Engaging underrepresented groups in high school introductory
computing through computational remixing with EarSketch.
In Proceedings of the 45th ACM technical symposium on
Computer science education (SIGCSE '14). ACM, New York,
NY, USA, 85-90.
DOI=http://dx.doi.org/10.1145/2538862.2538906

[8] Herbert P. Ginsburg. 1997. Entering the Child’s Mind.
Cambridge University Press.

[9] Google Developers. 2016. Blockly. Retrieved January 29, 2016
from https://developers.google.com/blockly/?hl=en

[10] Shuchi Grover, Roy Pea, and Stephen Cooper. 2014.
Remedying misperceptions of computer science among middle
school students. In Proceedings of the 45th ACM technical
symposium on Computer science education (SIGCSE '14).
ACM, New York, NY, USA, 343-348.
DOI=http://dx.doi.org/10.1145/2538862.2538934

[11] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. 2007.
Storytelling alice motivates middle school girls to learn
computer programming. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI
'07). ACM, New York, NY, USA, 1455-1464.
DOI=http://dx.doi.org/10.1145/1240624.1240844

[12] Susan Carol Losh. 2010. Stereotypes about scientists over time
among US adults: 1983 and 2001. Public Understanding of
Science, 19(3), 372-382.

[13] C. Dianne Martin. 2004. Draw a computer scientist.
In Working group reports from ITiCSE on Innovation and
technology in computer science education (ITiCSE-WGR '04).
ACM, New York, NY, USA, 11-12.
DOI=http://dx.doi.org/10.1145/1044550.1041628

[14] Cheryl L. Mason, Jane Butler Kahle, and April L. Gardner.
1991. Draw-a-scientist test: Future implications. School Science
and Mathematics 91, no. 5, 193-198.

[15] David A. Patterson. 2006. Computer science education in the
21st century. Commun. ACM 49, 3 (March 2006), 27-30.
DOI=http://dx.doi.org/10.1145/1118178.1118212

[16] Scratch Statistics. 2016. Retrieved January 29, 2016 from
https://scratch.mit.edu/statistics/

[17] Ian Simon, Dan Morris, and Sumit Basu. 2008. MySong:
automatic accompaniment generation for vocal melodies.
In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI '08). ACM, New York, NY, USA,
725-734. DOI=http://dx.doi.org/10.1145/1357054.1357169

