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A B S T R A C T  

Proficiency in arithmetic learning can be achieved by using a multitude of strategies, the most 

salient of which are procedural learning (applying a certain set of computations) and rote learning 

(direct retrieval from long-term memory). Here we investigated the effect of transcranial random noise 

stimulation (tRNS), a non-invasive brain stimulation method previously shown to enhance cognitive 

training, on both types of learning in a 5-day sham-controlled training study, under two conditions of 

task difficulty, defined in terms of item repetition. On the basis of previous research implicating the 

prefrontal and posterior parietal cortex in early and late stages of arithmetic learning, respectively, 

sham-controlled tRNS was applied to bilateral prefrontal cortex for the first 3 days and to the posterior 

parietal cortex for the last 2 days of a 5-day training phase. The training involved learning to solve 

arithmetic problems by applying a calculation algorithm; both trained and untrained problems were 

used in a brief testing phase at the end of the training phase. Task difficulty was manipulated between 

subjects by using either a large ("easy" condition) or a small ("difficult" condition) number of 

repetition of problems during training. Measures of attention and working memory were acquired 

before and after the training phase. As compared to sham, participants in the tRNS condition displayed 

faster reaction times and increased learning rate during the training phase; as well as faster reaction 

times for both trained and untrained (new) problems, which indicated a transfer effect after the end of 

training. All stimulation effects reached significance only in the "difficult" condition when number of 

repetition was lower. There were no transfer effects of tRNS on attention or working memory. The 

results support the view that tRNS can produce specific facilitative effects on numerical cognition – 

specifically, on arithmetic learning. They also highlight the importance of task difficulty in the 

neuromodulation of learning, which in the current study due to the manipulation of item repetition 

might have being mediated by the memory system. 

 

Keywords: cognitive training; mental arithmetic; posterior parietal cortex; prefrontal cortex; 

task difficulty; transcranial random noise stimulation. 
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1 .  I N T R O D U C T I O N  

1 .1 .  Types  o f  ar i thmet ic  l earn ing  

Numerical competence is an increasingly strong predictor of career success and general well-

being in today's world (Parsons & Bynner, 2005). Conversely, poor numerical skills have adverse 

effects on quality of life and world economies (Beddington et al., 2008). Learning arithmetical skills is 

therefore an important part of an individual’s quantitative education, and understanding just how this 

learning takes place in the brain is of interest not only for basic research but also for understanding 

conditions such as developmental dyscalculia, where this learning is impaired (Butterworth, 2005; 

Cohen Kadosh & Walsh, 2007). One of the more salient distinctions among the different types of 

arithmetic learning is that between learning by drill and learning by calculation (Delazer et al., 2005; 

Snowball et al., 2013). The former strategy involves committing arithmetic facts (such as 

multiplication tables) to long-term memory, whereas the latter involves applying a known algorithm 

(such as long division) in order to determine the result of a mathematical operation. The two strategies 

are not mutually exclusive, and are in fact typically used in a complementary fashion when 

arithmetical procedures are either taught (as part of mathematics education) or applied in everyday 

calculations. In a previous study that asked participants to perform a mental subtraction task, relative 

usage of either drill- or calculation-predominant strategies was predicted based on statistical 

properties of participants' RT distributions (LeFevre, DeStefano, Penner-Wilger, & Daley, 2006), 

specifically on the parameters of the ex-Gaussian function (detailed in section 2.4.1) that was fit to 

these distributions. 

1 .2 .  Neural  corre la tes  o f  ar i thmet ic  

At the neural level, drill and calculation strategies appear to be subserved by partly 

independent mechanisms. For instance, retrieval of memorised arithmetic facts is largely associated 

with verbal representations in the left angular gyrus (Delazer et al., 2003; Grabner et al., 2009; 
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Ischebeck, Zamarian, Schocke, & Delazer, 2009) – a region believed to more generally encode 

retrieval of symbolic information (Price & Ansari, 2011). On the other hand, calculation strategies 

during mental arithmetic have been shown to recruit the bilateral intraparietal sulci (Delazer et al., 

2003; Stanescu-Cosson et al., 2000) as well as frontal regions such as the middle and inferior frontal 

gyri (Delazer et al., 2005; Pesenti et al., 2001). One functional meta-analysis of studies involving both 

number tasks (e.g. number comparison, counting) and calculation tasks of mental arithmetic 

(Arsalidou & Taylor, 2011) further clarifies the relative contributions of frontal and parietal cortices in 

numerical cognition. In particular, accumulating evidence suggests that the former are comparatively 

more specialised in arithmetical calculation, while the latter (specifically the intraparietal sulcus and 

the inferior and superior parietal lobules surrounding it) are involved in basic numerical processing. 

Functional activations of these regions, and in particular of the dorsolateral prefrontal cortex 

(DLPFC), in tasks involving arithmetical calculations have been found using both magnetic resonance 

(Cho et al., 2012; Kawashima et al., 2004; Moeller, Willmes, & Klein, 2015; Rosenberg-Lee, Barth, & 

Menon, 2011; Zamarian, Ischebeck, & Delazer, 2009) and optical (Near-infrared spectroscopy, NIRS) 

functional imaging methods (Pfurtscheller, Bauernfeind, Wriessnegger, & Neuper, 2010; Tanida, 

Sakatani, Takano, & Tagai, 2004). 

The relative involvement of the regions within this fronto-parietal network in numerical 

cognition appears to change with increasing expertise with numbers, namely with development and as 

a consequence of cognitive training. Functional magnetic resonance imaging (fMRI) investigations 

have shown that, ontogenetically, frontal functions are predominant earlier in development, and are 

gradually complemented by recruitment of parietal areas such as bilateral intraparietal sulci. This 

observation holds both for basic processing of symbolic number (Ansari, Garcia, Lucas, Hamon, & 

Dhital, 2005; Holloway & Ansari, 2009) as well as for mental arithmetic (Kucian, von Aster, 

Loenneker, Dietrich, & Martin, 2008; Rivera, Reiss, Eckert, & Menon, 2005). Cognitively, this 

suggests decreased reliance on domain-general resources such as attention and working memory 

during numerical cognition, and, in the case of mental arithmetic, it corresponds to a transfer from 

methodological (and computationally inefficient) strategies of calculation, to faster and more effortless 

strategies of memory retrieval (Grabner et al., 2009). Notably, the idea of greater involvement of the 
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DLPFC during the initial stages of skill acquisition and a shift to other brain regions involved in 

automatic processing, such as the posterior parietal cortex in numerical cognition once skill has been 

mastered (Cohen Kadosh & Walsh, 2009), is in line with other neurocognitive models of skill 

acquisition (Chein & Schneider, 2012), including numerical development (Shalev, Unit, Zedek, & 

Berlin, 2007). 

1 .3 .  Brain  s t imulat ion  and  task  d i f f i cu l ty  as  

modulators  o f  ar i thmet ic  per formance  

One means of modulating the cortical changes that accompany arithmetic learning is 

transcranial random noise stimulation (tRNS). tRNS is a type of transcranial electrical stimulation 

(tES) whereby a current of random intensity values is delivered, with frequencies distributed across a 

certain range of the spectrum (Terney, Chaieb, Moliadze, Antal, & Paulus, 2008). Similar to anodal 

transcranial direct current stimulation (tDCS), tRNS applied concurrently during a cognitive or motor 

task has been shown to improve performance, presumably by increasing cortical excitability 

(Cappelletti et al., 2013; Chaieb, Paulus, & Antal, 2011; Prichard, Weiller, Fritsch, & Reis, 2014; 

Snowball et al., 2013; Terney et al., 2008). There is also preliminary evidence suggesting that tRNS 

may exhibit a stronger effect than anodal tDCS (Fertonani, Pirulli, & Miniussi, 2011). In our previous 

double-blind study, a group receiving tRNS to bilateral DLPFC exhibited a higher learning rate (and 

transfer to untrained problems) as compared to a sham group (Snowball et al., 2013). These effects did 

not emerge when we applied the stimulation to the parietal cortex, in a control experiment of the same 

study. This points to the utility of tRNS for mathematical learning but also suggests that simply 

stimulating regions known to be involved in the task does not necessarily lead to improved 

performance. 

An important empirical question is not just which region to stimulate during cognitive training 

but also during which stage of the cognitive training to deliver the stimulation. Preliminary research 

provides hints as to the relative stage at which these regions become involved in arithmetical tasks. 

Ischebeck, Zamarian, Egger, Schocke and Delazer (2007) examined the learning process involved in a 
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mental arithmetic task with fMRI and found that, as training progressed, learning was accompanied by 

a relative decrease of activation in frontal areas such as the precentral and inferior frontal gyri, and a 

relative increase of activation in parietal areas such as the angular gyrus. Similarly, an event-related 

brain potential (ERP) study of mental arithmetic training (Pauli et al., 1994) found that it is 

predominantly prefrontal regions that are involved in the first part of the learning (when there is little 

automaticity), while parietal areas are only involved at later stages, thus imitating arithmetic 

development. Finally, Delazer et al. (2003) found arithmetic learning – specifically, number matching 

and fact retrieval – to be accompanied by a shift of activation within the parietal lobe, from the 

intraparietal sulcus to the left angular gyrus, suggesting a shift in strategy from calculation to retrieval 

(see also Grabner et al., 2009). Collectively, these previous investigations provide further evidence 

that cortical recruitment during arithmetic learning shifts from frontal to parietal areas, and suggests 

that a similar posterior shift of the tES stimulation site may enhance the efficacy of arithmetic training.  

A final critical factor that is likely to impact cognitive enhancement is the difficulty of the 

trained task. Gill, Shah-Basak and Hamilton (2015) found that anodal tDCS of the left DLPFC applied 

concurrently to working memory training increased proficiency in a subsequent test, but only when the 

training programme was sufficiently demanding. Also, task difficulty in two working memory fMRI 

paradigms was positively correlated with the activation of relevant brain regions, including the left 

DLPFC (Heinzel et al., 2014; Nagel et al., 2011). The two sets of findings agree with regards to the 

role of task difficulty, inasmuch as brain stimulation selectively increases excitability in the neural 

populations most active at the time of stimulation (Silvanto, Muggleton, & Walsh, 2008). In numerical 

cognition, Pope and Miall (2012) found that cathodal tDCS applied to cerebellum was associated with 

superior performance relative to both sham and anodal tDCS for a difficult serial subtraction task but 

not an easier serial addition task; and Rütsche et al. (2015) found that, while anodal tDCS improved 

response latencies in large arithmetic problems, it decreased solution rates in arithmetic problems with 

smaller operand size. The above studies highlight the importance of task difficulty in the coupling of 

cognitive training and non-invasive brain stimulation.  

1 .4 .  Current  s tudy  
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The present study sought to clarify the role of task difficulty as a modulator of performance 

gain in a tRNS-assisted cognitive training paradigm in the domain of numerical cognition. To this end, 

we manipulated between groups the difficulty of an arithmetic learning task administered as part of a 

5-day training schedule, in a double-blind, sham-controlled design. We chose to manipulate task 

difficulty by varying the set size, taking 'easy' to mean fewer but more frequently-repeated problems, 

and 'difficult' to mean more numerous but less repeated problems. Previous research has indicated that 

the number of repetitions of an item can affect task difficulty (Warr, 1964). Participants learned drill 

and calculation arithmetic problems while receiving either tRNS or sham stimulation to bilateral PFC 

for the first three days and posterior parietal cortex for the remainder of the training. We expected that 

tRNS would facilitate learning relative to sham and that the magnitude of facilitation would be greater 

in the more difficult condition. 

2 .  M E T H O D S  

2 .1 .  Part ic ipants  

Thirty-two volunteers (14 female, 18 male; mean age = 22.38 years, SD = 3.37) participated in 

this study. All participants were right-handed (according to self-report), had normal or corrected-to-

normal vision, and met the safety requirements of participation in a tES experiment, i.e. we excluded 

participants who had a history of neurological conditions (including seizures), implanted metal 

objects, heart problems or past fainting spells; additionally, all participants were drug- and alcohol-

free for the entire week of their participation. Participants were randomly assigned to receive either 

tRNS or sham stimulation with the constraint that age and gender distributions were similar in the two 

stimulation groups (tRNS group: 7 females, 9 males; mean age = 21.94 years, SD = 3.55 years; sham 

group: 7 females, 9 males; mean age = 22.81 years, SD = 3.23 years). The two groups did not differ 

significantly in terms of age (F(1, 30)=0.53, p>.47). Informed consent was obtained before the start of 

each day, and each participant received £50 compensation. Ethical approval was obtained from the 

Berkshire Research Ethics Committee. 
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2 .2 .  Tasks  

2 .2 .1  D r i l l  a n d  C a l c u l a t i o n  a r i t h m e t i c  

Drill trials involved remembering associations between pairs of operands and a given result 

(see Figure 1, left). Participants were instructed to try to remember these associations throughout the 

training week. In keeping with the original paradigm (Delazer et al., 2005), the result of each Drill 

problem was determined using a certain algorithm; participants were not given this algorithm and were 

instructed to not try and guess it, but instead to learn the associations purely by "drill". The problem 

and associated result were displayed on the screen for a duration that halved daily throughout the week 

(day 1: 500ms; day 2: 250 ms; day 3: 125 ms; day 4: 62 ms; day 5: 31 ms). A mask was then displayed 

for 250 ms, followed by a repetition of the problem, this time without the result, and with a limited 

time window for participants to enter their response (day 1: 3000ms; day 2: 2500 ms; day 3: 2000 ms; 

days 4 and 5: 1500 ms). As with previous studies using this paradigm (Delazer et al., 2005; Snowball 

et al., 2013), the decreasing durations of the first display and response windows aimed to eliminate the 

effect of day and make the task increasingly challenging as training progressed. In the case of Drill 

problems, the aim was to encourage participants to produce the result by relying increasingly on 

memory retrieval and decreasingly on observing the presented result. Feedback on the accuracy of the 

response was then displayed on the screen for 500 ms, and participants could proceed to the next trial 

only after giving the correct response. 

 

Figure 1: Structure of a trial for each type of problem (left panel: Drill; right panel: Calculation). 
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For Calculation trials, participants were shown a pair of operands and asked to calculate the 

corresponding result using a given algorithm, which involved multiplication, addition and subtraction 

(see Figure 1, right). The two algorithms used were 2×R-L+1 and 2×R+L-10 (where L and R 

respectively denote the operands to the left and to the right of the "§" operator). During the initial 

instructions, participants received their assigned algorithm (see section 2.3.2 for details) printed on a 

sheet of paper that they could refer to at any point during the training period. Each set contained 6 

pairs of operands. Training material consisted of either one set ("easy") or two sets ("difficult"), and 

this difficulty condition was manipulated between-subjects. The terms "easy" and "difficult" do not 

reflect the difficulty of the problems themselves – which were all matched in difficulty – but of the 

conditions in which the total amount of training material consisted of these problems repeated more or 

less frequently (see section 2.3.2). Participants were instructed to always apply the algorithm rather 

than make use of any memorised results. Parameters relating to display durations, feedback and 

proceeding to the next trial were the same as for Drill trials, except that the response time window was 

not limited.  

2 .2 .2  C o n t r o l  t a s k s  

Participants completed a series of control tasks in order to determine the specificity of tRNS 

effects. On day 1, prior to the start of training, participants completed the Numerical Operations and 

Mathematical Reasoning components of the Wechsler Individual Achievement Test (WIAT, Wechsler, 

1997) in order to have a baseline measure of mathematical ability (relating to arithmetical 

computations and language-based problems, respectively). In addition, participants completed the 

(forward and backward) digit-span task and the abbreviated version of the Attentional Networks Task 

(ANT; Fan, McCandliss, Sommer, Raz, & Posner, 2002) before the first and after the fifth training 

days, in order to examine whether the training phase impacted verbal working memory or attention, 

respectively. The digit span is a subtest of the WAIS-III (Wechsler, 1997) and requires participants to 

listen to a string of digits and then reproduce them in the same (forward digit span) or in reverse 

(backward digit span) order. The ANT produces reaction time measures that can be used to quantify 

the efficiency of the three networks in the attentional system: alerting, orienting, and executive 



Popescu et al., 2015, Neuropsychologia, 81, 255-264.  | 10 

attention. Briefly, in the ANT, participants respond to the direction (left or right) of an arrow flanked 

horizontally by two other arrows on either side, with a warning cue appearing either instead or 

vertically on either side of a fixation cross. The efficiency of the three attentional networks is assessed 

by measuring how reaction times are influenced by varying the warning signal interval (alerting 

attention), the validity of the spatial cue (orienting attention), and the contrast between congruent and 

incongruent flankers (executive attention). The ANT included 3 blocks of 24 trials each.  

2 .3 .  Procedure  

2 .3 .1  tRNS procedure  

All participants received stimulation to the bilateral DLPFC (corresponding to scalp positions 

F3 and F4 in the international 10/20 EEG system) for the first 3 days of the training phase and to 

bilateral posterior parietal cortex (P3 and P4) for days 4 and 5. The choice of shifting stimulation site 

after the temporal midpoint of the training period was informed by previous literature that observed a 

shift in brain areas involved in arithmetic learning occurring anywhere between the first and the fifth 

day (Delazer et al., 2005). Current in the form of high frequency noise (100-640 Hz) was delivered by 

a battery-driven current stimulator (DC Stimulator Plus, Magstim, UK). The current intensity was 

1mA peak-to-peak, with each sample being drawn from a normal distribution with mean 0 µA, and 

with 99% of all generated amplitude values lying between -500 µA and +500 µA. Stimulation always 

started at the same time as the onset of the task. The stimulation duration was set to 20 minutes for the 

tRNS group and to 30 seconds for the sham group, both flanked by a 15 second upward and downward 

ramp. The current was delivered through two 4×4 cm electrodes that were secured in place using an 

elastic strap and placed in saline-soaked sponges to improve electrical contact with the scalp and 

reduce the risk of skin irritation. Neither the participant nor the experimenter was aware of the type of 

stimulation received. At the end of the experiment all participants were asked whether, judging by the 

sensation that they felt underneath the electrodes during the stimulation, they thought they were in the 

tRNS or in the sham stimulation group. This was done in order to verify the stimulation condition 
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blindness. Previous studies suggest that tRNS with the current intensity used here is not perceivable 

(e.g., Ambrus, Paulus, & Antal, 2010; Fertonani, Ferrari, & Miniussi, 2015). 

2 .3 .2  Tra in ing  p h a s e  

In a similar experimental design to Delazer and colleagues (2005) participants completed a 

five-day training phase, followed – on the final day – by a testing phase. The training involved daily 

sessions during which participants performed two types of arithmetic learning tasks: Calculation, 

where two numerical operands were connected by the operator §, and Drill, where the operands were 

separated by the operator # (see Figure 1 in section 2.2.1). The result was always a double-digit 

number, which the participants were asked to enter using a standard computer keyboard. Both 

conditions were presented in blocks of 18 trials. Within each day, there was an equal number of 

Calculation and Drill blocks, and their order was alternated. In keeping with the original paradigm 

(Delazer et al., 2005), and based on the observation that RTs speed up on subsequent days, the total 

number of blocks was different for each day (10 blocks on day 1, 12 on day 2, 14 on day 3, 16 on day 

4 and 14 on day 5), in an attempt to have daily training sessions of equal duration. In order to 

manipulate task difficulty between subjects, only one set of operand pairs was used for the training 

phase in half of the sample (the "easy" condition), meaning there were 6 Calculation problems and 6 

Drill problems in total, whereas for the other half (the "difficult" condition), two sets of operands were 

used (i.e., 12 possible problems for each of the two types of learning). In the easy condition there were 

two repetitions of each problem per block. In the difficult condition, where the number of individual 

problems doubled, the number of repetitions per block correspondingly decreased to one. Within each 

stimulation condition, participants were randomly assigned to one of four groups defined by the 

existence of 2 algorithms for the Calculation problems and 2 different sets of numerical operands used 

in all problems. Groups 1&3 and 2&4 were given the algorithms 2×R-L+1 and 2×R+L-10, 

respectively for calculation; and different sets of operands were used for groups 1&2 and 3&4, 

respectively. This assignment was done for the purpose of balancing the parameters of the task for 

each group, and was independent of the assignment of participants to either the sham or the tRNS 

group. Both the training and the testing phase tasks were implemented using E-Prime (PST Inc., 
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Pittsburgh, USA) on a desktop PC. Reaction time (RT) – measured from the onset of the problem 

display and until the final (second) digit of the response was pressed – and accuracy were recorded for 

each response. For all tasks, participants were seated in front of a 19" monitor, at a distance of approx. 

60 cm. 

2 .3 .3  Tes t ing  phase  

Following the end of the training phase, on day 5, participants underwent a single-session 

testing phase that aimed to assess whether the skills acquired for the two types of problems during 

training would transfer to new problems (pairs of operands). This session had the same structure as the 

daily training sessions, except (i) the operands included both "old" pairs from the training phase and 

"new" untrained pairs; (ii) feedback was not given and participants continued to the next trial 

regardless of the accuracy of their response. In keeping with the original paradigm (Delazer et al., 

2005), in the easy condition, three sets were used for the testing session: one set of old problems and 

two sets of new problems. For the difficult condition, due to an error in the programming of the task 

script, the testing session used only two sets: one set of old problems and one set of new problems. A 

total of 96 trials were presented for each problem type and in each difficulty condition, with 50% of 

trials comprising old problems. Participants were asked to provide their best guess for "new" Drill 

problems (whose results they had not learned) in order to check whether the underlying algorithm had 

been deduced.  

2 .4 .  Analyses  

A number of participants had inordinately low accuracy scores for old Drill problems in the 

testing phase. In contrast to the training phase in this phase the problems are presented without the 

solution. This result indicates that those participants had not learned the associations between operand 

pairs and their corresponding result in the training phase and instead just transcribed the isolated 

result. To assess whether those participants just guessing the answer at this stage we considered their 

performance at the chance level if their accuracy was ±2.5 SDs from the mean accuracy of new Drill 

problems (which cannot be solved correctly as they were not learned during the training). This resulted 
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in the 0.50 mean accuracy value as a cut-off for defining outliers for old Drill problems and led to the 

exclusion of 11 participants’ data (34%; 4 from tRNS, 7 from sham; 3 from "easy", 8 from "difficult") 

from all analyses of Drill problems, for both training and testing. Such a restricted remaining sample 

precludes interpretation of the group data (see Discussion) and we report the Drill results for the sake 

of transparency. 

. 

RT outliers (Mean±2.5 SDs, comprising <1% of trials) were removed separately for each type 

of problem and for each participant. Mean accuracy and mean RTs on correct trials for Drill and 

Calculation problems were submitted to separate 4-way mixed model analyses of variance with 

Stimulation Group (tRNS vs sham) and Difficulty (easy vs difficult) as between-subjects factors, and 

Day (1 through 5) and Block (1 through 5) as within-subjects factors. For each problem type, only the 

first 5 blocks of each day were taken into consideration to allow factorial analyses (Snowball et al., 

2013). The Greenhouse-Geisser correction was applied in cases where data violated the sphericity 

assumption. Learning rate was estimated using the power law of practice (Newell & Rosenbloom, 

1981; Rickard, 1997; see Supplementary Materials for details). 

2 .4 .1  R T  d i s t r ibut ion  ana lys i s  

Analyses of RT distributions can often provide more detailed descriptions than just standard 

measures of central tendency, which can obscure finer aspects of performance. In some cases the 

shapes of these distributions can be used to make inferences about underlying processes, allowing for 

the testing of hypotheses that are indistinguishable when only comparing mean RTs (for a review, see 

Balota & Yap, 2011). The ex-Gaussian function provides good fits for empirically obtained RT 

distributions, with parameters that are intuitively interpretable on the distribution histogram. This 

function is defined as the convolution of a normal and an exponential distribution (Heathcote, 1996; 

Heathcote, Popiel, & Mewhort, 1991; Lacouture & Cousineau, 2008). Its right-hand tail is skewed due 

to the exponential, and this makes it a good fit to RT distributions, which are often positively-skewed, 

with most RTs clustering at the faster end of the scale. Fitting the ex-Gaussian to RT data provides, for 

each participant, an estimate of µ and σ (the mean and standard deviation of the normal component) 
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and of τ (the mean of the exponential component, i.e. the positive skew); the mean RT is approximated 

by the sum of µ and τ. µ reflects the position of the distribution along the x-axis, and so an increase in 

µ reflects a uniform rightward shift of the main body of the distribution. An increase in τ corresponds 

to a rightward skew of the distribution, which can reflect a slowing on some trials due to "later" 

cognitive processes than those contributing to µ (e.g. response selection). Finally, σ indexes the RT 

variability in the normal component of the distribution. For tasks relying on working memory, an 

increase in µ has been suggested to reflect a global slowing of memory retrieval, with reliance on 

reasoning contributing predominantly to τ (Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007). 

In numerical cognition, µ and τ have been used to identify patterns of individual differences in simple 

mental arithmetic strategies (LeFevre et al., 2006).  

Here, for each training day of each participant, the RT distribution for each type of problem 

was submitted to an analysis which estimated the ex-Gaussian parameters µ, σ and τ (Lacouture & 

Cousineau, 2008). The RT distributions were calculated at day level and not at block level because at 

least 100 observations per distribution are typically needed to adequately fit the ex-Gaussian function 

(Ratcliff, 1979) 

3 .  R E S U L T S  

Participants were unable to correctly identify their stimulation group (see Table S3 in 

Supplementary Materials for details). 

3 .1 .  Contro l  tasks  

ANT (alerting, orienting, and executive attention) and working memory scores were submitted 

to Stimulation Group × Day ANOVAs. There were no significant effects for either (all ps>.15; see 

Table S4 in Supplementary Materials for details). Critically, the groups did not differ in baseline 

mathematical ability (all ps>.64). 
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3 .2 .  Train ing  phase  

3 .2 .1  R e s p o n s e  a c c u r a c y  a n d  l a t e n c y  

There were no significant effects for Drill problems in terms of accuracy or RT, and no 

significant effects for Calculation accuracy (all ps>.3). The only significant effect was for Calculation 

RTs, a Stimulation Group × Difficulty interaction (F(1, 28)=7.79, p<.01, ηp
2=.22), depicted in Figure 

2; all other effects were non-significant (all ps>.18). Planned comparisons revealed that the tRNS 

group was significantly faster than the sham group in the difficult condition (F(1, 28)=6.78, p<.05, 

d=1.39), but not in the easy condition. In addition, for the sham group only, the difficult condition was 

slower than the easy condition (F(1, 28)=11.64, p<.005, d=1.82); this effect within the sham group 

was confirmed by a decreased learning rate in the difficult as compared to the easy condition (see 

Supplementary Materials and Figure S1 for details). 

 

Figure 2: RTs on Calculation trials, as a function of Difficulty and Stimulation Group. Data is collapsed 

across all five training sessions. Error bars represent 95% confidence intervals. * p<.05, ** p<.01. 
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3 .2 .2  R T d i s t r i b u t i o n  ana ly s i s  

Figure 3a-b show the RT distributions for Calculation problems, for each difficulty condition. 

Whereas the distributions largely overlap in the easy condition, in the difficult condition the RT 

distribution peaks earlier in the tRNS than in the sham group; this is indexed by the smaller µ, while 

the shallower exponential tail is indexed by the smaller τ (see below). Separate Stimulation Group × 

Difficulty × Day mixed-model ANOVAs were conducted on each ex-Gaussian parameter. In line with 

the RTs results, the only significant effects were for Calculation: a Stimulation Group × Difficulty 

interaction on µ (F(1, 28)=4.76, p<.05, ηp
2=.15) and a trend towards the same effect on τ (F(1, 

28)=3.45, p=.074, ηp
2=.11) (see Figure 3a); all other effects were non-significant (all ps>.33). Planned 

comparisons revealed that both µ and τ increased with difficulty in the sham group (µ: (F(1,28)=8.33, 

p<.01, d=1.54; τ: F(1, 28)=4.88, p<.05, d=1.81), but not in the tRNS group (all ps>.68). Additionally, 

the sham group had higher τ values than the tRNS group in the difficult (F(1, 28)=4.73, p<.05, 

d=1.16), but not in the easy condition (p>.65); the same contrast approached significance for µ (F(1, 

28)=3.32, p=.083, d=0.97). This indicates that, in conditions of increased task difficulty, tRNS reduced 

both the mean and the tail of the RT distribution. 
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Figure 3: Calculation RT distributions for the (a) easy and (b) difficult conditions as a function of 

Stimulation Group. Data points represent the mean proportion of responses across participants, within 500 

ms-wide bins. (c) The ex-Gaussian parameters – µ (mu), σ (sigma) and τ (tau) – that describe these 

distributions as a function of Difficulty and Stimulation Group. Error bars represent 95% confidence 

intervals. * p<.05, ** p<.01 
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3 .3 .  Test ing  phase  

RT and accuracy for each problem type were submitted to Stimulation Group × Difficulty × 

Problem Novelty (old vs new) mixed-model ANOVAs. Numerical Operations was included as a 

covariate for Calculation analyses, to partial out the influence of individual differences in baseline 

numerical ability when comparing the skill transfer from trained to untrained material. There were no 

significant effects for Drill problems (all ps>.63). All effects in the RT analyses of Calculation 

problems were non-significant (all ps>.42) except a Stimulation Group × Difficulty interaction (F(1, 

28)=5.07, p<.05, ηp
2=.17), depicted in Figure 4a. It is noteworthy that this effect is similar to the one 

obtained for training Calculation RTs (see Figure 2). Subsidiary analyses revealed lower RTs in the 

tRNS than in the sham group within the difficult (F(1, 28)=4.70, p<.05, d=1.16) but not in the easy 

condition (p>.32), and also higher RTs as difficulty increased in the sham group (F(1, 28)=5.23, 

p<.05, d=1.22) but not in the tRNS group (p>.37). These effects were independent of novelty 

(Stimulation Group × Difficulty × Problem Novelty: p>.74). 
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Figure 4: (a) RTs and (b) accuracy on Calculation problems in the testing phase, as a function of (a) 

Difficulty and Stimulation Group or (b) Difficulty, Stimulation Group and Problem Novelty. Error bars 

represent 95% confidence intervals. * p<.05. 

For Calculation accuracy, all effects were non-significant (p>.11), except a Stimulation Group 

× Difficulty × Problem novelty interaction (F(1, 28)=5.30, p<.05, ηp
2=.18) (see Figure 4b). The 

Stimulation Group × Difficulty interaction was significant for new (F(1, 28)=5.73, p<.05, ηp
2=.20) but 

not for old problems (p>.4). Subsidiary analyses revealed lower accuracy in the sham than in the tRNS 

group, in the easy condition for new (F(1,28)=7.45, p<.05, d=1.46) but not for old problems (p>.24), 

suggesting that the increased effort presented by new (untrained) problems was reflected in a 

decreased mean accuracy only for sham but not for tRNS. Subsidiary analyses for new problems in the 
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sham group also revealed increased accuracy as difficulty increased (F(1,28)=6.89, p<.05 d=1.40). 

This suggests that, for the participants in the sham group, performance with untrained problems was 

worse when the training was less effortful. 

4 .  D I S C U S S I O N  

We found that tRNS improved performance on arithmetic problems requiring the application 

of a formula to a set of operands ("Calculation"). This improvement was reflected in a stabilisation of 

performance and learning rate even as difficulty increased, and also generalised to untrained problems. 

Cumulatively, these results suggest that tRNS-assisted training mitigates the effect of increased 

difficulty.  

4 .1 .  Mit igat ion  o f  increased  d i f f i cu l ty  dur ing  tra in ing  

phase  

Stimulation group differences were only observed when the task was more difficult. 

Additionally, only the sham group incurred the performance cost for increased difficulty. These results 

are consistent with previous findings that the effectiveness of tDCS in mental arithmetic (Rütsche et 

al., 2015) and working memory tasks (Gill et al., 2015; Pope & Miall, 2012) increases with task 

difficulty. They are also consistent with the long-standing proposition in the learning and memory 

literature that during a learning task, a minimum level of desirable difficulty optimises long-term 

outcomes by promoting transfer of knowledge (Bjork, 1994).  

While we term the manipulation of set size in the current study as difficulty manipulation, one 

might suggest that the manipulation of the number of repetitions caused the performance differences 

rather than difficulty manipulation. However, previous research in cognitive psychology have 

indicated that performance differences as indicated by reaction time and/or accuracy are an indicator 

of task difficulty, and task difficulty can be created at different levels such as the perceptual, memory, 

response, or cognitive level. Our definition of difficulty manipulation in the current context is 
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supported by the performance differences between the groups, which was significant when performing 

the task without brain stimulation (sham group). Indeed, for sham stimulation the differences in 

reaction time as a function of set size is an indicator of task difficulty. Our RT distribution analysis 

also indicates that the effect is not likely to be due to perceptual differences, but rather due to a later 

level of information processing. The effect of tRNS as a function of difficulty might have being 

mediated in the current study by the memory system. Previous tRNS studies, including the current 

one, have indicated the effect of tRNS on learning and memory (Cappelletti et al., 2013; Fertonani et 

al., 2011; Snowball et al., 2013). In this case tRNS, when delivered under a condition of low number 

of repetitions (the "difficult" condition), might have yielded greater benefit than sham stimulation by 

improving procedural memory. For participants trained in the easy condition (higher number of 

repetitions), the beneficial effect of the tRNS might not have been fully "exploited", possibly due to a 

ceiling effect. Alternatively, due to the small number of Calculation problems in the easy condition, 

participants might have simply switched to rote retrieval, a strategy that might not have benefited from 

tRNS in the current study. 

The group difference effect in mean Calculation RTs in the difficult condition is 

complemented by the effect observed for the parameters of the ex-Gaussian fit to the RT distribution; 

namely, tRNS decreased the normal (µ) as well as the exponential (τ) component as compared to 

sham. While the effect for µ can be viewed in direct relation to the decreased mean RTs observed in 

the ANOVA, the interpretation of the effect for τ is more subtle. Greater values of τ imply a stronger 

rightward skewing of the RT distribution, which in turn has been suggested to underlie later cognitive 

processes (Luce, 1986), as opposed to earlier or more perceptual ones such as the time required to 

register the problem and physically make a response. In a study where participants solved addition 

problems in different formats (Arabic numbers or number words) and reported their strategy 

(calculation or memory retrieval) at each trial, an ex-Gaussian analysis suggested that, for each format, 

retrieval trials contributed predominantly to µ and calculation trials to τ (Campbell & Penner-Wilger, 

2006). Similarly, LeFevre et al. (2006) found that τ discriminated well between the different self-

reported strategies (such as retrieval, transformations or counting) used in a simple subtraction task, 

having small values for retrieval and large values for counting. Applying such an interpretation – 
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based on the assumption that RTs on calculation trials will be sampled from a different distribution 

than RTs on retrieval trials – to the present study, the smaller τ of the tRNS group might reflect faster 

or more efficient calculation. This, in turn, might reflect – and be a result of – an improvement of 

working memory capacity, a hypothesis supported by previous work associating low τ values in choice 

reaction tasks with better working memory abilities (Cowan & Saults, 2013; McVay & Kane, 2012; 

Schmiedek et al., 2007; Shahar & Meiran, 2015) or, alternatively, to lower working memory demands 

related to experimentally induced working memory load (Shahar, Teodorescu, Usher, Pereg, & 

Meiran, 2014). 

During training, the effect of stimulation did not vary according to day. This may be due to 

different reasons. First, the interaction with the day factor might have been masked by the 

confounding effect of problem presentation time, which decreased with each session, thus making the 

task more difficult as training progressed. Second, it might be that tRNS – in contrast to, for instance, 

tDCS – is effective from the very beginning of the stimulation, with its immediate effect perhaps due 

to the oscillatory nature of its current. This would conceal the facilitative effect within a smaller time 

scale than would be detectable with the present analyses, and would instead give rise to the relatively 

constant difference in RTs between the groups observed when viewed at the day level. Third, it is 

possible that the group difference found in the difficult condition was due a pre-existing baseline 

difference between the groups. However, the two last explanations are unlikely, due to several 

reasons: (i) the participants were randomly assigned to stimulation groups; (ii) the groups did not 

differ in terms of the baseline of calculation ability (as measured before the start of stimulation by the 

Numerical Operations component of the WIAT); and (iii) it was the learning rate (α), rather than the 

initial performance (B), that was higher for the tRNS group in comparison to sham (see Supplementary 

Materials for details).  

 

4 .2 .  Transfer  to  untra ined  problems  dur ing  tes t ing  

phase  
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During Calculation testing, accuracy for new problems was lower in the easy than in the 

difficult condition, for the sham group. A likely explanation is that, in the easy condition training 

consisted of relatively few Calculation problems, these problems were being solved by memory recall 

in this group as opposed to actual calculation. This, in turn, made new problems presented in the 

testing phase more difficult, since at this point mental calculation, which was not trained to the same 

extent as in the difficult condition, now had to be used. This effect did not occur for the tRNS group, 

which also showed better performance than sham in the easy condition. This might suggest that here, 

perhaps due to a facilitation of calculation strategies during training (Snowball et al., 2013), such a 

strategy was used more consistently during both training and testing. 

Problem novelty did not interact with stimulation group and task difficulty for Calculation 

RTs. This effect suggests that the tRNS facilitation effect was transferred from the trained to the 

untrained material. This is similar to the results of Snowball et al. (2013), where transfer of RT 

facilitation was also found to occur across old and new Calculation problems. The finding of a transfer 

effect in the current study is in line with previous tRNS studies that showed short (Cappelletti et al., 

2013) or long-term transfer effect (Snowball et al., 2013), and therefore highlights the potential of 

tRNS as a tool to increase transfer effects. However, the longevity of the tRNS effects in the current 

study is unknown. 

A large proportion of participants had to be excluded from the Drill analyses due to their 

evidently incorrect strategy for performing the task. We have reported the Drill results for the sake of 

transparency, however the remaining sample size is unfortunately too small to allow reliable group 

inference, and our null results for Drill trials – in both the training and the testing phase – should be 

seen in this light and interpreted with caution. 

It should be noted that the facilitative effects presented here were obtained using a novel tRNS 

montage that implied shifting the stimulation site mid-training. This aimed to reproduce the putative 

frontal-to-parietal shift that accompanies arithmetic learning (Delazer et al., 2003; Ischebeck et al., 

2007; Pauli et al., 1994). Mental arithmetic consists of complex operations carried out across a 

network of predominantly parietal and frontal regions. While both are integral to a person's ability to 
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carry out these operations, frontal areas are comparatively more engaged during calculation while 

parietal areas appear involved in basic numerical processing more generally (Arsalidou & Taylor, 

2011). Importantly, as noted above, these respective roles of the frontal and parietal cortices in 

performing mental operations shift dynamically with increasing expertise (e.g., Rivera et al., 2005). 

Our intention here of reproducing said frontal-to-parietal shift was done, in turn, in an attempt to have 

the relevant region stimulated at the most relevant time, and thus enhance the amount of facilitation. 

However, the current dataset does not allow a direct comparison in that sense with the results of 

previous studies that have used fixed stimulation site montages with numerical cognition training tasks 

(Cappelletti et al., 2013; Snowball et al., 2013). It is hoped that future studies will investigate the 

relative efficacy of the fixed and shifting stimulation site paradigms, for instance by manipulating the 

time point during training when the stimulation shift takes place. This will allow to ascertain which 

optimal montage should be applied to hypothesised brain regions, in order to enhance the efficacy of 

tRNS-assisted training in any domain of cognition. Also, the present data set, while including a sham 

tRNS control, does not benefit from a control stimulation site to enable it to verify the specificity of 

the found effects to the particular stimulation montage employed here. Using a similar training 

paradigm as in the present study, Snowball et al. (2013) have suggested that the positive effect of 

tRNS on Calculation learning and transfer was specific to the prefrontal stimulation site but not also to 

a posterior parietal control site. However, a more complete characterisation of the specificity of a 

particular stimulation montage to arithmetic learning can be achieved by future studies that may 

choose to employ further control sites based on brain areas likely to have little specific relevance for 

numerical cognition. 

Finally, a potential concern might be the uneven distribution of new and old problems 

between the two difficulty conditions, namely that (fewer) new problems are repeated more often in 

the difficult than in the easy condition. However, the main conclusions of this study are based on the 

comparison between sham and tRNS in each difficulty condition, and therefore this potential problem 

does not impact the interpretation of the main results. 

4 .3 .  tRNS se lec t iv i ty  
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Stimulation did not affect performance on control (attention and working memory) tasks, 

suggesting that, as in some tES studies of numerical training (Cappelletti et al., 2013; Cohen Kadosh, 

Soskic, Iuculano, Kanai, & Walsh, 2010; Snowball et al., 2013), the effects were specific to the trained 

material and do not extend to domain-general abilities. It is, however, very difficult to rule out the 

possibility that some hidden – beneficial or impairing – effects exist for cognitive processes other than 

the ones tested (Brem, Fried, Horvath, Robertson, & Pascual-Leone, 2014; Iuculano & Cohen Kadosh, 

2013; Sarkar, Dowker, & Cohen Kadosh, 2014).  

4 .4 .  Conclus ions  

Overall, the results of this study corroborate the ability of tRNS to selectively improve 

cognitive training outcomes – including transfer effects – in high-level cognitive training as a function 

of task difficulty. These effects render tRNS a promising tool to improve cognitive training outcomes. 

Future studies should shed light on whether tRNS can be particularly helpful when the level of 

difficulty is subjectively or objectively high, such as in specific learning disabilities, or in cognitive 

decline due to ageing. At the same time its exact effect at the cognitive (e.g., memory systems) and 

neural level (e.g., the effect on brain networks, neurochemicals) should be further examined to 

increase our understanding and exerts it effect to a greater extent. 
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