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Abstract

A real-world environment is complex and non-uniform, varying over space and time.
This thesis demonstrates the impact of such environmental heterogeneity upon the ways
in which organisms acquire information about the world, via a series of individual-based
computational models that apply progressively more detailed forms of environmental
structure to understand the causal impact of four distinct environmental factors: temporal
variability; task complexity; population structure; and spatial heterogeneity.

We define a baseline model, comprised of an evolving population of polygenic indi-
viduals that can follow three learning modes: innate behaviour, in which an organism
acts according to its genetically-encoded traits; individual learning, in which an organism
engages in trial-and-error to modify its inherited behaviours; and social learning, in which
an individual mimics the behaviours of its peers.

This model is used to show that environmental variability and task complexity affect
the adaptive success of each learning mode, with social learning only arising as a dominant
strategy in environments of median variability and complexity. Beyond a certain complexity
threshold, individual learning is shown to be the sole dominant strategy. Social learning is
shown to play a beneficial role following a sudden environmental change, contributing to
the dissemination of novel traits in a population of poorly-adapted individuals.

Introducing population structure in the form of a k-regular graph, we show that
bounded and rigid neighbourhood relationships can have deleterious effects on a pop-
ulation, diminishing its evolutionary rate and equilibrium fitness, and, in some cases,
preventing the population from crossing a fitness valley to a global optimum. A larger
neighbourhood size is shown to increase the effectiveness of social learning, and results in
a more rapid evolutionary convergence rate.

The research subsequently focuses on spatially heterogeneous environments, proposing
a new method of constructing an environment characterised by two key metrics derived
from landscape ecology, “patchiness” and “gradient”. We show that spatial complexity
slows the rate of genetic adaptation when movement is restricted, but can increase the rate
of evolution for mobile individuals. Social learning is shown to be particularly beneficial
within heterogeneous environments, particularly when mobility is restricted, suggesting
that phenotypic plasticity may act as a substitute for mobility.



Declaration

I hereby declare that the work presented in this thesis is entirely my own.

Daniel Jones
London

7 September 2015

3



Acknowledgements

I would like to thank Tim Blackwell, whose supportive and rigorous guidance was fun-
damental in shaping this research; and Mark d’Inverno, whose encouragement in the
precursors to this work rendered it possible.

Thanks to all of the faculty and staff at the Department of Computing, whose ecosystem
provided a thriving backdrop to work within. I would like to particularly thank Christophe
Rhodes, for insights into some of the more intractable problems; and Spiros Andreou, for
providing the cluster computing infrastructure that powered the simulations used in these
experiments. Many thanks to my examiners, James Marshall and Peter Bentley, whose
detailed comments have strengthened the dissertation immensely, and to Liam McNamara
for feedback on earlier drafts. This research would not have been possible without the
financial support provided by the Engineering and Physical Sciences Research Council
(grant number EP/P503418/1).

I must acknowledge my gratitude to the Santa Fe Institute Complex Systems Summer
School, for seeding the impetus behind these lines of thought, and to Richard Goldstein
and Kyriakos Kentzoglanakis at the National Institute for Medical Research, whose passion
and acuity provided a further intellectual catalyst.

Many thanks to my parents, for imparting curiosity from the very start, and in continu-
ing to provide encouragement through the winding routes that led to this point.

Finally, to Julia, for her patience, support and perspective throughout the duration of
this work, for which I owe a debt of boundless gratitude.

4



Contents

1 Introduction 9

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Conceptual Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Statement of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Motivations, Methods and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Background and Related Work 16

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Evolution, Learning and Sociality . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Learning and Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Behavioural Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 The Baldwin Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Social Learning and Genetic Assimilation . . . . . . . . . . . . . . . . . 20

2.2.5 Theoretical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Environmental Heterogeneity: Types and Consequences . . . . . . . . . . . . 25

2.3.1 Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Task Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Population Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Spatial Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Landscape Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Baseline Model 35

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Actions and Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Unstructured Populations 44

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Key Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Baseline Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Factor 1: Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5



CONTENTS

4.3.3 Factor 2: Task Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.4 Variability & Task Complexity . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Structured Populations 61

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Key Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Discrete Grid Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Regular Graph Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Spatial Heterogeneity 72

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Key Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Constructing Heterogeneous Environments . . . . . . . . . . . . . . . . . . . . 73

6.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.2 Location and Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4.1 Uniform, Random and Structured Environments . . . . . . . . . . . . 80

6.4.2 Landscape Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Conclusions 87

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Key Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A Further Model Results 96

B Simulation Parameters 106

C Implementation 107

Bibliography 108

6



List of Figures

2.1 Gene frequencies in Hinton and Nowlan’s learning model (1987) . . . . . . . 22

2.2 Belew’s “phenotypic limb” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Fitness landscape and ‘drawdown’. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 From Gause (1934): Didinium nasutum devouring Paramecium caudatum . . . . 31

3.1 Representation of the space of B-bit fitness functions . . . . . . . . . . . . . . 36

3.2 Deriving fitness from an individual’s phenotype . . . . . . . . . . . . . . . . . 38

3.3 Proximity function for differing values of α . . . . . . . . . . . . . . . . . . . . 39

4.1 Static environment: Behaviour distributions over time . . . . . . . . . . . . . 47

4.2 Static environment: Genotypic and phenotypic distance from E . . . . . . . . 48

4.3 Environmental perturbation: Behaviour distributions over time . . . . . . . . 49

4.4 Environmental perturbation: Genotypic and phenotypic fitness over time . . 50

4.5 Fluctuating environment: Behaviour distributions over time . . . . . . . . . . 51

4.6 Fluctuating environment: Genotypic and phenotypic fitness over time . . . . 51

4.7 Learning modes at equilibrium across a range of pswitch values. . . . . . . . . 52

4.8 Changing B: Behavioural distributions at equilibrium . . . . . . . . . . . . . . 53

4.9 Changing B: Genotypic and phenotypic fitness at equilibrium . . . . . . . . . 54

4.10 Changing B: Behavioural distributions between [32, 64]. . . . . . . . . . . . . 57

4.11 Learning modes at equilibrium across an array of pswitch and B values. . . . . 58

5.1 Population structure: Learning modes in well-mixed, 1D and 2D structures . 63

5.2 Population structure: Behaviour modes in a 1D structure . . . . . . . . . . . . 64

5.3 Population structure: Mean age over time . . . . . . . . . . . . . . . . . . . . . 65

5.4 Population structure: Behavioural modes in a fluctuating environment . . . . 66

5.5 Regular graphs: Behavioural modes against k . . . . . . . . . . . . . . . . . . 67

5.6 Regular graphs: Assimilation time against k . . . . . . . . . . . . . . . . . . . 68

5.7 Regular graphs: Behavioural modes against k, random offspring placement . 69

5.8 Regular graphs: Behavioural modes against pswitch and k . . . . . . . . . . . . 69

5.9 Regular graphs: Genetic and phenotypic fitness against pswitch and k . . . . . 70

6.1 Constructing a landscape by summing cumulative octaves . . . . . . . . . . . 75

6.2 Landscape construction: An example landscape . . . . . . . . . . . . . . . . . 76

6.3 Landscape construction: Variable values. . . . . . . . . . . . . . . . . . . . . . 77

6.4 Moran’s I for varying fragmentation (detail) and gradient measures . . . . . 78

6.5 Spatial heterogeneity: Evolution is slower in complex environments . . . . . 80

6.6 Spatial heterogeneity: Social learning proliferates in complex environments . 82

6.7 Spatial heterogeneity: Behavioural states against spatial distribution . . . . . 82

7



LIST OF FIGURES

6.8 Spatial heterogeneity: Genetic and phenotypic fitness in unstable environments 83

6.9 Spatial heterogeneity: Genetic and phenotypic fitness, restricted learning
modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.10 Convergence is slowest with high values of F and high values of G . . . . . . 85

A.1 Model parameters: Varying N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.2 Model Parameters: Varying α . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.3 Model Parameters: Varying α: Two values of α . . . . . . . . . . . . . . . . . . 98

A.4 Model Parameters: Varying pnoise . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.5 Model Parameters: Varying µ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.6 Model Parameters: Varying pmut . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.7 Strategies: Copy Fittest Neighbour vs Copy Random Neighbour . . . . . . . 102

A.8 Strategies: Copy Random Trait vs Copy Novel Trait . . . . . . . . . . . . . . . 103

A.9 Strategies: Assimilate If Advantageous vs Always Assimilate . . . . . . . . . 104

A.10 Thoroughbred population: Learning modes across values of pswitch and B . . 105

8



Chapter 1: Introduction

1.1 Overview

This research presented in this dissertation concerns the impact that environmental factors
have on the ways in which an organism acquires information. Specifically, it proposes
that environmental variability and heterogeneity affect the modes of learning that natural
selection will give rise to, demonstrating that different forms of environmental structure
produce quantifiably distinct combinations of innate behaviour, individual learning, and
social learning. We adopt a computational approach, producing a series of individual-
based models of increasing complexity, exploring incrementally more detailed types of
environmental heterogeneity to understand how each class of heterogeneity modifies the
population’s baseline dynamics. These results are used to make predictions about the
impacts of environmental heterogeneity in empirical contexts.

This chapter provides an introductory overview, beginning with a broad outline of the
concepts under examination (§1.2). A statement of the overarching hypotheses is given
(§1.3), outlining the particular environmental properties that are to be investigated. The
research methods are summarised (§1.4), including the motivations, scope and limita-
tions of the computational models adopted. Finally, the structure of the dissertation is
described (§1.5), giving an overview of each chapter and its role in the context of the overall
investigation.
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1.2. CONCEPTUAL CONTEXT

1.2 Conceptual Context

The world is an uncertain place. An animal in the wild inhabits a landscape that is subject
to continuous, unpredictable change (Wiens, 2000; Tilman et al., 1997); it may awake to
find its world transformed by a major natural event. Even its own activities within the
world cause persistent and long-lasting consequences, reshaping its own selective pressures
and those of its neighbours (Odling-Smee et al., 2003). Environmental heterogeneity can
manifest itself in many different ways: as gradual changes, sudden transformations, spatial
patterns, and the social context constituted by an individual’s kin. All of these factors have
ramifications for the survival of a species in the wild.

The reproductive success of an individual is determined by how well-adapted it is to
its environment, following the functional blueprint of its genetic material. As this material
remains invariant across an individual’s lifetime, the variability and heterogeneity of a
real-world ecosystem poses a challenge for evolution, which must continue to maximise an
individual’s fitness under uncertain circumstances.

The solution that occurs in nature is for organisms to have the potential to produce
a range of different phenotypes in response to changing environmental pressures (West-
Eberhard, 1989; Scheiner, 1993). This phenotypic plasticity enables an individual to adapt
its functional properties throughout its lifetime, improving its fitness across uncertain
landscapes. The long-term dynamics of evolutionary development are thus buffered by
short-term feedback through an organism’s growth and development, providing adaptive
robustness against change (Dukas, 2013).

The most sophisticated example of phenotypic plasticity is the capacity to learn novel
behaviours. By trying out different approaches to interacting with the world and sampling
their outcomes, an organism can gain insights into the costs and benefits of novel environ-
mental resources (Thorpe, 1956). Rather than hard-code reaction norms to environmental
stimuli within an individual’s genotype, the evolutionary process may defer to uncertainty
by providing the capacity to modify behaviours based on prior experience.

Learning in isolation is vital for the discovery of new traits, but poses additional costs,
in the form of risks to the individual and time taken to accumulate experience. To mitigate
these costs, many organisms engage in social learning, observing the behaviour of their
peers and imitating novel traits (Heyes, 1994; Galef and Laland, 2005). Alongside reducing
the risks of individual learning, social learning renders it possible for learned traits to
be transmitted across generations, enabling useful behaviours to be ingrained within a
population’s collective memory (Laland and Hoppitt, 2003; Heyes and Galef Jr, 1996).
However, social learning has additional cost/benefit trade-offs, including the potential
for scrounging behaviours (Vickery et al., 1991; Galef and Laland, 2005) and the risk of
acquiring outdated or inaccurate information (Giraldeau et al., 2002).

Each of these three modes of information acquisition – innate behaviour, individual
learning, and social learning – possesses adaptive benefits and drawbacks in different
situations. Each can arise at various degrees, with animals exhibiting a spectrum of
behaviours from the thoroughly instinctive to those that are progressively learned (Thorpe,
1956; Lorenz, 1971). The research that follows seeks to understand how the balance between
the three is affected by the ecological context that a species evolves within.

10



1.3. STATEMENT OF THESIS

1.3 Statement of Thesis

The thesis proposed in this dissertation is that environmental heterogeneity has a measur-
able impact on the ways in which organisms acquire information about the world. Four
types of environmental factors are identified: temporal variability; task complexity; popula-
tion structure; and spatial heterogeneity. Each factor is studied in turn by constructing a
series of computational models that exemplify their properties, thus quantifying how each
factor is likely to influence the optimal balance of innate behaviour, individual learning,
and social learning,

Specific hypotheses are given under each of the four environmental factors below.
Some effects on evolution and learning are self-evident. We should, of course, expect
to see general behavioural plasticity increase in environments of greater heterogeneity
(Pigliucci, 2001), a prediction implicit in theoretical work as early as that of Wright (1931)
and supported by the empirical work of (e.g.) Baythavong (2011). More details on the
expected effects of each factor are given below.

The objective is to understand the impact of four different environmental factors, each
of which will be represented and tested within the model. Summary definitions are given
below; these will be expanded upon when they are defined within the models in Chapters
3, 4, 5 and 6.

• Variability: The rate of change that the environment exhibits (studied in §4), modelled
as stochastic alternations to the environmental fitness function that are shared across
the population. Particular focus will be given to the case of sudden environmental
change, individual events that substantially alter the fitness landscape, a subclass of
variability that has distinct ramifications and is often the subject of separate empirical
study.

Environmental variability is likely to select for modes of information acquisition
that act on shorter timescales. Anderson (1995) considers learning to be of transient
benefit in a static environment, but persists in one that varies; Feldman et al. (1996)
and Kendal et al. (2009) conclude that social learning is likely to outcompete asocial
learners when environmental variation is low. In an empirical study, Hallsson and
Björklund (2012) show that a gradual change in conditions leads to an increase in
phenotypic plasticity and in genetic variance, but that subsequent selection leads to a
decrease in later plasticity.

• Task complexity: The degree of difficulty (and hence learning time) of the survival
pressure posed by the environment (§4), modelled as the number of subtraits required
to reach the global fitness optimum.

A higher task complexity determines the learning time of a trait. Some particularly
sophisticated natural traits (Dukas and Visscher, 1994; Marler and Slabbekoorn,
2004; Tebbich et al., 2001) are shown to be learned over extensive proportions of
the individuals’ lives. This predicts that task complexity may predict the level of
plasticity and learning exerted in performing a task.

• Population structure: The structure of the society that an inhabitant resides within,
bounding its interactants and defining its social environment (§5), modelled as a

11



1.4. MOTIVATIONS, METHODS AND SCOPE

fixed social graph.

Evolutionary graph theory (e.g. Taylor et al. (2007), Lehmann et al. (2007)) predicts
that population structure can transform the equilibrium behavioural modes, fostering
cooperation as a dominant strategy. In this context, it may suggest a higher prevalence
of social learning.

• Spatial heterogeneity: The variance and patterning of selection across distinct areas
of the environment, creating a disparity in adaptive requirements between individuals
(§6), modelled with a spatially-extended 2D plane with fitness landscape imposed by
a novel generator function. This will also encompass task heterogeneity, in which a
number of different selection pressures are imposed concurrently.

Spatial heterogeneity is known to produce plastic phenotypic responses (Baythavong,
2011), dependent on the type of heterogeneity displayed: Baythavong (2011) identifies
a continuum between fine-grained varying environments, which result in raised
phenotypic plasticity, and coarse-grained heterogeneity, which produces an adaptive
genetic response; we hope to investigate this continuum and extend its predictions to
distinct forms of heterogeneity. Furthermore, Rainey and Travisano (1998) concludes
that environmental heterogeneity produces and sustains genetic polymorphism and
population structure via studies on bacterial cultures.

These are introduced sequentially through this thesis. Chapter 4 begins by studying
the effect of variability (including sudden environmental change) and task complexity,
environmental factors that are experienced uniformly across the population, with every
individual subject to the same fitness demands. Chapter 5 introduces population structure,
investigating the effect that social environment has upon modes of learning. Chapter 6
introduces spatial heterogeneity (and task heterogeneity), siting the population on a
spatially-extended 2D plane and examining the effect of varying fitness demands based on
patchiness and fragmentation metrics drawn from landscape ecology.

For simplicity, we will henceforth use the term “heterogeneous” as shorthand for
“spatiotemporally heterogeneous”: that is, varying over space and/or time.

1.4 Motivations, Methods and Scope

This work seeks to address the under-representation of environmental factors within
models of behavioural ecology. Many authors (Gordon, 2011; Laland et al., 2012; Marquet
et al., 1993) have called for a closer integration between the fields of ecology (and landscape
modelling) and behavioural studies, capturing both the environmental variation studied
within ecology and the patterns of behaviour that this variation selects for. Levin (1992)
identifies pattern and scale as the key problem in ecology, yet it is omitted from most
theoretical models. This thesis demonstrates different types of impact that environmental
heterogeneity can have upon patterns of evolution and learning.

It does so via computational simulation, creating a series of individual-based models
that are intended to capture general evolutionary dynamics rather than the behaviours of a
particular species. Each of these decisions is explained below.

12



1.4. MOTIVATIONS, METHODS AND SCOPE

Methods: Simulation

Simulation is an increasingly popular approach in computational biology and behavioural
ecology, allowing for the prediction of real-world behaviours via the abstraction of observed
processes (Bentley, 2009). There are multiple motivations for selecting modelling above
empirical studies. The prime reason is that it allows for experiments that are difficult
or impossible to carry out in vivo (Hartmann, 1996; Rohrlich, 1990) due to prohibitive
timescales or other pragmatic issues. A limited number of empirical studies have been
performed on learning-evolution interactions across multi-generational timescales (Dukas,
2008), and on the impact of environmental heterogeneity on evolutionary trajectories
(Rainey and Travisano, 1998). However, to explore both factors simultaneously, across
a range of quantifiable environmental factors, in a species sophisticated enough to also
engage in social learning, would require a great deal of time and resources. This scope of
research is thus an appropriate candidate for simulation.

Modelling these experiments in computer simulation allows us to ask what-if questions
about states and processes in a less constrained manner than empirical studies, acting
as a heuristic tool (Hartmann, 1996) that can potentially lead to unforeseen generalities
underlying a system prior to discovering empirical or analytic answers (Wolfram, 1994).
Particularly in cases when causal factors are complex or not well-understood, factors can
be removed or isolated to better understand the causal pathways at play (Hartmann, 1996);
here, we hope to better understand how complementary properties of environmental
variability may affect learning and evolutionary tendencies.

In general, simulation can play a useful role bridging the gap between the purely
empirical and purely theoretical (Humphreys, 1994; Winsberg, 2001), acting as an “opaque
thought experiment” (Di Paolo et al., 2000) that can provide explanatory power when a
systemic behaviour does not obviously follow from the interactions between its elements,
closing the cognitive gap between model and scientist, and fostering creativity within the
scientific process (Jones and d’Inverno, 2011).

Methods: Individual-Based Modelling

Individual-based models are commonly used to model populations in ecology and evo-
lutionary studies (Grimm and Railsback, 2013) because they can accurately capture the
dynamics of bottom-up, distributed phenomena such as genetic evolution and social
behaviour, in which systemic properties arise from numerous individual interactions
(Grimm et al., 2005). Unlike a mean-field model, which make assumptions of uniformity
of behaviour, adopting the individual-based metaphor allows each simulated organism to
possess a distinct set of states, a crucial property in discovering how differential types of
behavioural tendencies can arise in a mixed population.

This thesis is also concerned with modelling particular types of landscape heterogeneity.
Although the effect of space and environmental pattern is known to be a major factor in
ecology (Levin, 1992; Fogarty et al., 2012), it is typically omitted from theoretical models
of evolutionary and learning (Volterra, 1928; Hinton and Nowlan, 1987). Some analyti-
cal models have shown evolutionary consequences of general environmental variability
(Borenstein et al., 2008; Feldman et al., 1996; Wakano and Aoki, 2006) and heterogeneity
(McNamara et al., 2011; Boyd and Richerson, 1988; Zhivotovsky et al., 1996), but typically
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1.5. DISSERTATION OVERVIEW

as a single discrete category or axis. More sophisticated analytic approaches to modelling
heterogeneity are possible, cf. (Taylor et al., 1993), but would not support the bottom-up
social dynamics that we seek to explore.

To examine distinct classes of environmental heterogeneity, with properties determined
by continuous variables (for example, testing a range of environmental task complexity or
rates of change), requires a more detailed conception of space, in which individuals may
experience different selection pressures following quantifiable structures. This is addressed
by extending the individual-based model population with structure and an explicit form of
space; initially placing the population on a graph structure, and subsequently extending
the population across a 2D environment, with spatial patterning properties determined by
quantifiable factors.

Methods: Species Agnosticism

The models described in this thesis are not representative of any particular animal species
or environment, and have not been parametrised or calibrated as such. The objective is
to create a model framework that makes as few assumptions as possible about the world
whilst still demonstrating the phenomena in question, abstracting from micro-level details
in order to be applicable to as wide a range of scenarios as possible (Bedau, 1999). This
follows the principle of Occam’s razor, in which an explanation should always be sought
that makes no more assumptions than are necessary.

A number of other assumptions and simplifications are made in order to be maximally
parsimonious with the assumptions and complexity encoded within the model. These
include adopting a naive trial-and-error approach to learning, assuming full learnability
(and evolvability) of all traits, simple unimodal fitness landscapes, and not imposing any
explicit costs on learning activities. A critical evaluation of the work’s limitations is given
in Section 7.4.

1.5 Dissertation Overview

Chapter 2 presents a review of existing research within the field. We look first at ecological
models which incorporate evolution, learning and social processes, and subsequently at
those which involve a heterogeneous, fluctuating environment. We review metrics used
within landscape ecology to quantify and model environmental heterogeneity.

Chapter 3 describes a novel theoretical model produced in support of this thesis,
modelling a population of agents that are capable of engaging in a combination of innate
behaviour, individual learning, and social learning. This baseline model is developed
incrementally in subsequent sections, with the introduction of new structural and spatial
properties.

In Chapter 4, an initial set of experiments are performed using this baseline model,
exploring the impact of differing task complexity and environmental rates of change on
the population’s learning dynamics.

Chapter 5 extends the baseline model with the notion of population structure. We model
social interactions by siting our population first on 1-dimensional and 2-dimensional lattices,
and subsequently on regular graphs of arbitrary degree k. This enables us to rigorously
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1.5. DISSERTATION OVERVIEW

interrogate the interactions between population structure and learning behaviours: are
different forms of population structure likely to foster different modes of learning?

Chapter 6 introduces environments that are spatially explicit and spatio-temporally
heterogeneous. We define a two properties of heterogeneity, with reference to literature
from landscape ecology and spatial analysis, and describe a new approach to constructing
a spatially heterogeneous environment. We explore the interactions between learning and
evolution across environments of different types of heterogeneity.

Chapter 7 summarises the results and predictions produced through the thesis, considers
their limitations and threats to validity, and provides some suggestions for further work.

Finally, Appendix A presents further experimental results which are out of scope of
the main body of the text; Appendix B publishes the parameter values used in each of
the experiments detailed within; and Appendix C documents the simulation and analysis
implementation details.
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Chapter 2: Background and Related Work

2.1 Overview

In the following chapter, we review the current state of research informing this thesis, both
empirical and theoretical. This includes ecological and zoological studies, computational
and mathematical models, and theoretical discussions from the philosophy of biology.

We are concerned with how environmental variance affects the way that information is
transmitted in biology. We begin by omitting environmental factors and looking at existing
research on the baseline interactions between evolution and learning (§2.2), distinguishing
between individual and social modes of learning. We discuss the Baldwin effect, a proposed
mechanism in which learning can guide evolution. Results from empirical and theoretical
studies are reviewed.

We then proceed to look at existing literature on the impact of environmental factors on
learning and evolution (§2.3), focusing on each of our four key environmental properties:
variability; task complexity; population structure; and spatial heterogeneity.

We finally review the analysis and modelling of environmental structure in ecology
(§2.4), which will be relevant when constructing our own environmental models later in
this thesis. We evaluate common landscape metrics, drawing on research from landscape
ecology and spatial analysis.

2.2 Evolution, Learning and Sociality

2.2.1 Learning and Plasticity

The title of this thesis uses the term ‘learning’: the acquisition and modification of be-
havioural traits during an organism’s lifetime, usually driven by evaluating alternative
behaviours through trial or observation.

This is part of a wider class of biological capabilities under the umbrella of ‘phenotypic
plasticity’ (Bradshaw, 1965; West-Eberhard, 1989), a responsive adaptability that was
recognised as a crucial buffering factor in the models of evolution as far back as Wright
(1931). As described by West-Eberhard (1989):

“Phenotypic plasticity is the ability of a single genotype to produce more than
one alternative form of morphology, physiological state, and/or behaviour in
response to environment conditions.” (p249 West-Eberhard, 1989, author’s
emphasis)

An example of mechanistic plasticity is the claw strength of certain crabs, which alters
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adaptively based on the shell thickness of the mussels that they consume (Smith and
Palmer, 1994; Agrawal, 2001). Consequently, mussel populations may begin to accordingly
select for increased shell thicknesses, resulting in an evolutionary “arms race”.

Those classes of change that act within the timespan of an organism’s lifetime are
known as labile plasticity (Scheiner, 1993). Conversely, changes which occur once during
development, and remain constant for the rest of an organism’s lifetime, are termed fixed
plasticity. Here, variance occurs between, rather than within individuals (Gupta and
Lewontin, 1982). The focus of this thesis is upon the former case, on traits and individuals
that are able to continually adapt within their lifespan.

It is now understood that phenotypic plasticity is not a marginal concern, but a property
that is universal across living creatures (Pigliucci, 2001). Moreover, plasticity itself evolves
to maximise fitness in variable environments (West-Eberhard, 1989), acting as an adaptive
trait that can be selected for (Bradshaw, 1965; Agrawal, 2001): the greater the degree of
change or heterogeneity imposed by the environment, the greater the degree of plasticity
that should result (Lefebvre and Palameta, 1988; Wcislo, 1989; Lewontin, 1991).

As well as environments predicting plasticity, understanding the dynamics of the
plasticity exhibited by a species can tell us many things about the properties of the
environment that it has evolved within. Charmantier (2008), for example, indicates that the
phenotypes of avian populations have been reliably and rapidly correlated with changing
environments, and suggests that they could be used as an early indicator of climate change.

Learning is a particularly powerful case of phenotypic plasticity in that it allows
for the encoding of more complex stimulus-effect links (Thorpe, 1956; Pearce, 2013),
allowing an individual to modify its behaviour over short timespans based on conditioning
developed from previous encounters. This is in contrast to the gradual changes that typify
morphological phenotypic plasticity (Pigliucci, 2001), which are often one-dimensional
and sometimes irreversible. Moreover, individuals can engage in trial-and-error trials to
innovate novel traits, selectively adopting those that result in some fitness payoff (Pearce,
2013) and thus creating the potential for new behavioural discoveries.

Miller and Todd (1991) identify three adaptive functions of learning. It can enable
adaptations that respond to environmental changes at timescales quicker than evolution
would otherwise be unable to track, expressing flexibility and reversibility over rapid
periods (Pigliucci, 2001), and so providing fitness advantages over periods of major envi-
ronmental upheaval. It can enable the organism to overcome the size limitations of the
genotype by exploiting environmental regularities, extending phenotypic reach in ways that
may otherwise not be evolutionarily possible, including acting as the basis of knowledge
development via cumulative culture (Boyd and Richerson, 1985). It may also act to help and
guide evolution, escaping local fitness optima and potentially changing the evolutionary
trajectory of a species (Nolfi and Parisi, 1996).

The first of these capacities – learning’s affordance of responsivity on short timescales –
is key to its adaptive importance, and will be discussed in the following section. We will
return to learning’s potential for guiding evolution in Section 2.2.3.
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2.2.2 Behavioural Optimality

Evolution operates by selecting on variance between generations, refining behaviours and
optimising towards maximum net reproductive success, or fitness. Natural selection tunes
an individual’s traits to optimise the cost/benefit tradeoff that is experienced in developing
and exhibiting a trait (MacArthur and Pianka, 1966; Davies et al., 2012); the thickness of
a lobster’s shell is selected to provide the optimal balance of defensive strength versus
ontogenic and metabolic expenses.

For mechanical traits that may have a relatively small set of interactions with other
facets of behaviour, optimal selection is a relatively uncomplicated process. A trait should
express a mean value that most closely resembles the survival challenges likely to be
imposed by the environment. This can be extended via phenotypic plasticity to allow for a
trait to change its morphology based on experience, such as in the development of crab
claw strength in response to mussel shell thickness, and vice versa (Smith and Palmer,
1994) – a phenomenon described as adaptive phenotypic plasticity (Bradshaw, 1965)

The optimality argument also predicts that learning capacities should likewise be
optimised for the uncertainty that is likely to be experienced within the environment. This
optimality is exploited throughout contemporary models of animal ecology and evolution:
a behaviour that is shown to provide optimal net fitness within an evolutionary model is
likely to have the same benefits within a real-world scenario, and so we can predict that
behaviour to arise in similar contexts. Thus, if a model shows that a bird should spend a
particular length of time nesting to optimise metabolic payoffs, it predicts that evolution
will have selected for the same behaviour. Optimality has been successfully used to analyse
decisions about foraging (MacArthur and Pianka, 1966) and mating (Davies et al., 2012).

We exploit this assumption of optimality in the models developed within this thesis,
which make claims to predictive power by demonstrating the optimum balance of learning
modes under particular sets of environmental contexts. However, there are limitations
and caveats implicit when assuming optimality (Davies et al., 2012). Having incomplete
knowledge of a scenario’s cost/benefit tradeoffs may result in important factors being
omitted, skewing the predictions of the model. This is particularly critical when considering
behavioural traits, which can involve the nonlinear interactions of many different costs
and considerations, including life history variance; a forager may make riskier decisions
when it is desperate for food. It is also possible that particular behavioural traits may not
be particularly well-tuned by the process of natural selection, or unable to reflect rapid
changes in environmental requirements.

2.2.3 The Baldwin Effect

When evolutionary systems are extended with behavioural plasticity, we should expect
some interesting interactions to arise. One that came to the attention of the first generation
of evolutionary theorists after Darwin (Baldwin, 1896; Morgan, 1896) is the “Baldwin
effect” (Simpson, 1953), a proposed mechanism in which learning guides the direction of
evolution.

The general pattern encapsulated within the Baldwin effect is as follows.

1. A population arises in which some trait P becomes beneficial.
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2. Some individuals arise which, through their phenotypic plasticity, are able to learn P.

3. In some of these individuals, the trait P becomes innate (genetic assimilation).

With the assumption that innate behaviours are less costly than those which are plastic,
we would then expect selective pressure to lessen on these particular learning capabilities: if
we can accomplish a task innately, we no longer need to be able to maintain the potentially
expensive metabolic apparatus needed to learn it (West-Eberhard, 2003). This weakening of
genetic selection is known as shielding, and is another phenomenon that we should expect
to see in a simulation, if these hypotheses hold.

It is not obvious that such a process should occur; why should a population which is
disposed to be able to learn a trait be disposed to acquire genetically? The machineries for
learning and those for genetic acquisition may be mutually distinct, and there is no clear
reason why a behavioural adaptation should have a causal impact on genetic change.

Godfrey-Smith (2003) argues that such a scenario is likely to arise in the simple case
that, if the selection pressure for trait P becomes so great that a population will not
survive without it, being able to learn P may buy the organisms enough time to develop it
genetically. This is termed the “breathing space” scenario.

Papineau (2005) elaborates with a potential formalisation of the genetic assimilation
process:

1. Suppose we have an advantageous trait P, which requires subtraits I. Every one of
these subtraits is individually necessary and jointly sufficient to produce P. Without
the other Is, however, each individual subtrait does not provide a selective advantage.

2. Suppose that each subtrait can either be performed by a learned mechanism (IL), or
by genetic instinct (IG).

3. Each subtrait is difficult to obtain by learning (IL), but even more unlikely to occur
through genetic mutation (IG). Conversely, once I has been acquired, it is cheaper
to express through IG, and more costly via IL (through the aforementioned costs of
learning: maintenance of machinery, time taken over trial and error, etc).

4. Without any Is at all, the selective advantage of any individual new I remains zero.

5. Now, assume that this probability differential renders the likelihood of obtaining all
IGs is effectively nil, but the likelihood of obtaining all ILs is merely very small. Given
the cheaper cost of innate ability versus learning, an individual who does succeed in
learning P will suddenly experience a selective advantage of developing any IG.

6. This IG can then be passed to offspring. Now, a second benefit of IG emerges: as one
less subtrait is required, the process of learning the remaining ILs becomes cheaper.

The steps described above can be summarised as a kind of probabilistic piggybacking:
a highly beneficial but negligibly unlikely scenario can be obtained via one that is less
beneficial but more likely to occur. An example is the innate ability of woodpecker finches
to utilise tools to collect grubs from the holes bored by woodpeckers (Tebbich et al., 2001).
This requires the ability to (i) obtain a suitable tool, (ii) observe the creation of a hole, or
at least its location, and (iii) apply it to scoop out said grubs. It is unlikely that each of
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these genetic traits would arise independently, but plausible that, through individual or
cumulative imitative learning, they could collectively be transmitted to the same individual.

Further specific examples of Baldwin-like phenomena have been discovered in nature
(Wcislo, 1989; Agrawal, 2001; Simpson, 1953). But why should this seemingly obscure
phenomenon have broader significance? One reason is that it can be seen as giving foresight
to the typically blind process of natural selection, by permitting an organism to explore the
region around the normal space delineated by its genotype. As John Maynard Smith (1987)
observes,

“...finding the optimal [solution] in the absence of learning is like searching for
a needle in a haystack. With learning, it is like searching for the needle when
someone tells you when you are getting close.” (Smith, 1987, p762).

In other words, learning can act as a dowsing rod that points evolution in the direction
of likely opportunities. We shall proceed to examine how this is further developed by the
introduction of social learning.

2.2.4 Social Learning and Genetic Assimilation

Social learning (Zentall and Galef, 1988) is defined as the acquisition of behaviours from
other individuals; usually members of an organism’s species, though occasionally observed
in inter-specific interactions (Heyes and Galef Jr, 1996; Seppänen and Forsman, 2007).
Predominantly applied to behavioural traits, it may take place through mimicry, goal-based
conditioning, cognitive reasoning (in the case of humans), or other distinct mechanisms
(Lefebvre and Palameta, 1988; Papineau, 2005).

Historically thought to be a relatively infrequent curio (Galef, 1976; Boyd and Richerson,
1983, 1985), social learning has been demonstrated to empirically occur in a range of
species, from chimpanzees, rodents and finches (Galef and Laland, 2005) to multiple
different species of insect, both colonial (Lancet and Dukas, 2012; Sarin and Dukas, 2009)
and noncolonial (Coolen et al., 2005).

Notable in many of these cases is the potential for culture to develop cumulatively,
spreading from individual to individual in a chain- or web-like fashion. A further de-
lineation is necessary to distinguish between these two separate forms of information
transmission. Where the passage of genetic information can be described as vertical (from
parent to child), the peer-to-peer exchange of traits within a generation is described as
horizontal transmission (Boyd and Richerson, 1985; Cavalli-Sforza, 1981).

Boyd and Richerson assert that this persistence across generations is the factor that
distinguishes cultural learning from other forms of phenotypic plasticity; it has “population-
level consequences” (Boyd and Richerson, 1985, p4), persisting beyond the death of an
individual and potentially resulting in traditions which are passed along to endure for
generations (Avital and Jablonka, 2000; Galef, 1990).

A number of theoretical studies have been carried out on cultural evolution (Boyd
and Richerson, 1985; Cavalli-Sforza, 1981; Lowen and Dunbar, 1996; Best, 1999), in which
cultural information spreads either horizontally, or obliquely: with traits transmitted
from the previous generation, whether related or unrelated. Predominantly, these focus
on transmission of social traits in the form of directional bias to individual tendencies
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(Cavalli-Sforza, 1981; Belew, 1990), taking mean-field, population-level approaches (Boyd
and Richerson, 1985).

However, social learning comes with its own cost/benefit tradeoffs. Giraldeau et al.
(2002) discusses the potential for ingrained social learning to lead to suboptimal behaviour
via information “cascades”, in which outdated information percolates across the population,
giving rise to maladaptive behaviours. There is also risk posed by the potential for cheaters
to arise in the population, creating a producer-scrounger dynamic (Barnard and Sibly, 1981;
Vickery et al., 1991; Kurvers et al., 2012; Arbilly and Laland, 2014; Dyer et al., 2008; Kameda
and Nakanishi, 2002)

Papineau (2005) continues his analysis of the Baldwin effect by turning to behavioural
traits that are mediated specifically by social learning. The argument is encapsulated by
the inequality:

p(G) < p(L) < p(S) (2.1)

Where p(G) is the probability of exhibiting a trait innately, p(L) is the probability
of learning it through exploration, and p(S) is the probability of acquiring it through
social learning. In a scenario wherein it is effectively impossible to obtain all of our
aforementioned subtraits I through evolution (IG), and unlikely to obtain them through
individual exploration (IL), it may be significantly more probable that a suite of subtraits
may be picked up through social imitation (IS). Returning to the case of the woodpecker
finches, it seems plausible to imagine a finch duplicating the tool-finding and tool-usage
behaviour of its peers. Through cultural spread, therefore, the chances are higher of
entering into a situation in which all of our IS subtraits are in place, primed for genetic
assimilation.

To verify the theory proposed within this heuristic model, we will proceed to look to
mathematical and computational models that provide concrete implementations of these
ideas.

2.2.5 Theoretical Models

Hinton and Nowlan and its derivatives

The watershed model of learning and evolution is Hinton and Nowlan’s 1987 paper (Hinton
and Nowlan, 1987) (henceforth “HN”), which extends the notion of the genetic algorithm
to support a highly simplified form of learning. The motivation is to demonstrate the idea
that acquired characteristics can affect the trajectories of gene distributions over time. They
observe that this is biologically preferable because “a learning trial is much faster and
requires much less expenditure of energy than the production of a whole organism”. As
this model is critical to the field, we will summarise it here.

• A population of agents is created, each with a genome G ∈ gN , comprising N traits
g ∈ {1, 0, ?}, and a target phenotype GT = 1N . Any phenotype other than GT has an
effective fitness of zero, whereas GT has a higher fitness. ? genes are interpreted as
being undefined, and subject to lifetime learning.
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Figure 2.1: Gene frequencies in Hinton and Nowlan’s learning model (1987)

• Each generation, every agent “learns” by repeatedly tossing q coins (1000 attempts)
where q is the number of ? genes. If every trait g = 1, the agent has found the
optimum and halts.

• Agents are selected to breed for the following generation with a fitness 1+ 19n
1000 , where

n is the number of learning trials remaining (out of 1000) after the optimum was
encountered. This is thus equal to 1 for all agents which didn’t locate the optimum,
and 20 for those which found the optimum immediately.

The behaviour of the model is shown in Figure 2.1. A Baldwin-like effect should
be evident. For the first few generations, the relative frequencies of each allele remains
roughly constant: a few agents exist with genotypes solely made up of 1 and ? agents, with
these distributions spreading via one-point recombination. After several more generations,
recombination begins to replace these agents with those which have a higher relative
proportion of 1s, due to the fitness differential caused by their more rapid learning rate
(due to the fitness function’s dependency on the number of trials). Ultimately, fixation
occurs with a majority of alleles reaching 1. Some ?s do still exist; statistical analysis
reveals (Belew, 1990) that this is because the relative fitness of a mostly-innate agent versus
a completely-innate agent is small enough for evolution to be relatively neutral.

Though elegant, the simplicity of HN is also its weakness. The same analysis indicates
that the model is highly parameter-dependent: if we double the number of ? alleles per
agent, or halve the learning time, the optimum is never discovered, and the population
languishes. The model still, however, succeeds in illustrating the general form of dynamics,
and this model has acted as a springboard for numerous extensions.

Belew (1990) extends HN by introducing a basic form of social interchange. Successful
agents can transmit a “cultural advantage” to their offspring – a purely vertical transmission
– by inducing a bias to the likelihood of performing successful learning trials. A typical
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member of the population has a 50% chance of guessing each of its learning alleles correctly,
as in HN. Here, an individual that is the offspring of an individual that has managed to
attain the optimum fitness (a “Winner”: G = 1N) has a higher probability of a correct
guess. With a competitive advantage constant CA = 0.1, each allele is toggled to a 1 with a
probability of 0.6.

The outcome is that convergence to optimality occurs much sooner. However, the
resultant population harbours a greater number of ?s, indicating that the selection pressure
towards full genetic assimilation has decreased in the face of a higher incidence of plasticity.

Best (1999) builds on these cultural ideas further by adopting overlapping generations,
a truly horizontal mode of transmission, and a form of mimesis that does not always imply
movement towards an optimum: in real-world scenarios, he argues, organisms are likely
to mimic behaviours rather than strategies, and so are equally likely to learn deleterious
traits. The outcome is that convergence accelerates once more, though with a similarly
sub-optimal outcome.

Connectionist Models

A different approach is taken by Ackley and Littman (1991), who make use of neural
networks and reinforcement learning to introduce a more continuous adaption process. In
this model:

• a population of agents interacts with a hostile environment, populated with simple
carnivorous enemies and metabolic resources

• each agent has a pair of neural networks: an action network A, to determine responses
to stimuli, and an evaluation network E, to give responses to previous actions

• the weights of both are genetically determined, though E is fixed through the agent’s
lifetime, whereas A can be subsequently modified based upon the results of E’s
evaluations

To begin with, the majority of agents are eliminated as their random innate abilities
lead them to deleterious behaviour: for instance, moving away from food or towards
enemies. The few which survive proceed to replicate, with slight mutations in their
descendants’ connection weights producing modified behaviours. Following natural
selection, latter generations thus have genetic capabilities that better reflect the world
around them. However, plots indicate that behaviours continue to fluctuate, as the world
and its selection pressures continue to change based on resource availability.

The genetically hard-coded E reflects an agent’s evolved conception of how to evaluate
its present state, with a positive value resulting in the back-propagated reinforcement (in
A) of the previous timestep’s action. This has been summarised as a scalar ‘goodness’
rating, roughly equivalent to an axis of pleasure versus pain.

An appeal of this strategy is that fitness cannot be derived directly from an organism’s
genotype, but emerges from a series of applications of A and E, effectively distinguishing
between the choices that an individual makes within its lifetime, based on metabolism and
learning, and the longer-term developmental cycles of innately programmed evaluative
capacities in E.

Two major results arise from Ackley and Littman’s work:
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Figure 2.2: The “phenotypic limb”, reproduced from (Belew, 1990, p15). The
first joint is moved by the process of evolution, in which a species or gene pool
becomes better adapted to an environment. The second joint is driven by learning
and behaviour, enabling an individual to responsively alter its character through
its lifetime, to adapt to changing environmental demands.

• that a population capable of both learning and evolutionary adaptivity greatly outlives
one which has only one or the other

• that a learning function which is not directly coupled to fitness (that is, with a
different internal criterion of success) can still serve to guide species-level evolution

However, perhaps due to computational limits of the time, the accompanying analysis
based on a small set of experiments, and is brief and heuristic in its scope.

A more rigorous approach is taken by Nolfi et al. (1994), who use a similar connectionist-
evolution framework with distinct behavioural and evaluative components. By applying
analysis of variance to parallel situations with and without learning, the ability to learn
certain traits is shown to correlate with a higher rate of genetic assimilation. Moreover, an
evolved food-finding ability leads to an inherited predisposition towards learning.

Multi-Peaked Fitness Landscapes

Learning and evolution are known to have particularly complex non-linear interactions
when acting upon structured, multi-peaked fitness landscapes. Borenstein et al. (2006)
summarise that, in general, phenotypic plasticity serves to smooth a fitness landscape by
enabling an individual to search the nearby fitness landscape area and escape local optima.
Belew (1990) uses the metaphor of a phenotypic “limb” (Figure 2.2): a fixed joint leads to a
specific location in functional space, with a flexible forearm of learned behaviour enabling
flexibility around this axis.

Developing Hinton and Nowlan’s (1987) single-optimum model, this notion is gener-
alised to arbitrary multipeaked landscapes through analytic and numeric analysis (Boren-
stein et al., 2006). Three conclusions are drawn:
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Figure 2.3: Fitness landscape and ‘drawdown’.

• in a relatively rugged, multi-peaked (or rapidly changing) landscape, this smoothing
effect serves to accelerate the movement towards optima

• in a generally flat (or static) landscape, behavioural plasticity actually slows genetic
convergence to an optimum, by decreasing the relative fitness of higher points

• learning aside, the prime determinant of genetic convergence on a complex landscape
is the maximal “drawdown”, or the largest difference between a peak and trough
encountered en route to an optimum (Figure 2.3). With learning, this effect is
mitigated through smoothing.

Although the adaptive landscape metaphor is one of the dominant paradigms within
population genetics, there are limitations to the metaphor. A fitness landscape is dependent
on its neighbourhood operator, and the fitness function that generates the landscape, which
must capture the complexity of interactions that take place within a real-world genome
such as pleiotropy and other epistatic effects. Using a multi-valued function is generally
insufficient to capture these real-world complexities. A full survey of this model should
account for such interactions, and the neighbourhood relationships found in empirical
gene interactions.

2.3 Environmental Heterogeneity: Types and Consequences

In Section 2.2, we looked at models and studies of evolution and learning that do not
include environmental factors, or predominantly treat them as steady-state background
values. This section proceeds to review existing research on the behavioural effects of the
four major environmental factors identified as the focus of this thesis:

• Variability: environmental change over time, incorporating both gradual change and
sudden transformative events

25



2.3. ENVIRONMENTAL HETEROGENEITY: TYPES AND CONSEQUENCES

• Environmental complexity: the complexity and learning time of the selective pres-
sures posed by the environment

• Population structure: bounding an individual’s social environment based on a social
interaction graph

• Spatial heterogeneity: extending the population into a spatially varying environment,
in which individuals experience different selection pressures

We will look at the literature corresponding to each of these factors in turn, later
returning to their results in the concluding chapter.

2.3.1 Variability

Environmental change has long been understood as a key factor that drives evolution
(Levins, 1968), setting the pace of adaptive change as well as producing and maintaining
phenotypic plasticity (Pigliucci, 2001). Much theoretical and empirical work has been done
to understand the effects of temporal variance on evolution and learning.

Hallsson and Björklund (2012) perform a detailed study of the evolution of plasticity
within insects, with rapid, continuous and fluctuating temperature changes imposed upon
habitats over several generations. Their experiments confirm that a continuous change in
temperature leads to the expected increase in genotypic variance and phenotypic plasticity,
as does sudden fluctuation in temperatures. After 18 generations of selection, lineages that
had been exposed to continuous temperature changes showed no change in their level of
plasticity. Surprisingly, those lineages that had been exposed to major fluctuating changes
had a decreased level of plasticity, perhaps indicating that the earlier plastic responses
in fluctuating environments were actually maladaptive to the long-term survival of the
species.

In an avian study, Dingemanse et al. (2004) show that fluctuating pressures in envi-
ronments give rise to higher genetic variance, and that males individuals with a more
exploratory propensity were frequently rewarded, though this result itself fluctuated
between years.

Templeton and Rothman (1978) model evolution in changing environments, considering
temporary variance to be a proxy for general fine-grained environmental heterogeneity.
They claim that irregular fluctuations and “runs” of environmental states may be important
in maintaining genetic polymorphism. However, their model does not incorporate plasticity,
which is the typical evolutionary response to short-term change, and the predictions of the
model have been disproven by more recent empirical work (e.g. Hallsson and Björklund
(2012)).

One of the first models of to explicitly incorporate social learning within a fluctuating
environment was created by Boyd and Richerson (1988), who show that social learning
requires two conditions to dominate: (1) individual learning is inaccurate, and (2) peers
experience a similar environment (spatially or temporally). The two factors are frequently
correlated, with a low rate of change resulting in higher predictability and a better reliability
of social learning.

Feldman et al. (1996) uses a single-locus population genetics model of individual versus
social learning to show that greater probabilities of environmental change give a lower
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adaptive success to social learning: if the environment changes state every generation, social
learning is never seen to evolve, as the information received by a social learner becomes
outdated. However, for longer periods of environmental fluctuation, social learning is seen
to arise as a stable strategy in combination with a lower level of individual learning. This
result is supported by Kendal et al. (2009)’s models of social learning strategies in changing
environments, showing that social learning is likely to outcompete asocial learners when
environmental variation is low.

Wakano et al. (2004) describe a mathematical model that allows any of innate behaviour,
individual learning and social learning to arise. In static, unchanging environment, innate
behaviour is the dominant strategy; in changing environments, either social or individual
learning dominates. They later refine this work (Wakano and Aoki, 2006) to show that social
learning is likely to arise in environments with a median rate of change, with individual
learning prevailing in fast-changing environments.

Similarly using a two-state, stochastically fluctuating model of the environment, Boren-
stein et al. (2008) finds partial support for the three-regime result of Wakano and Aoki
(2006). When these two states are switched between discretely, with no overlap, the model
shows that a mix of individual and social learning is preferred for survival, in order to
innovate and then disseminate the traits required to respond to the changing environ-
mental demands. This appears to outcompete innate behaviour even in a relatively stable
subsequent environment. However, if the two environmental states overlap, a pure social
learning strategy can dominate.

Dyer and Bentley’s (2002) PLANTWORLD model simulates the behaviour of a large
population of plants within stable and varying environments. It demonstrates that environ-
mental variability can be mitigated by the evolution of behavioural responses, preventing
population decline in a suboptimal environment by switching to a strategy of “dormancy”,
coupling a population to its environment and therefore decoupling it from environmental
variability.

Borg and Channon (2012) develop the baseline version of our model (Jones and Black-
well, 2011) to explore the effects of changing levels of environmental variability on pop-
ulation dynamics. They conclude that social learning is particularly advantageous when
variability fluctuates, but that population collapse is likely to arise when extreme fluctua-
tions take place within homogeneous populations.

Nolfi and Parisi (1996) uses a connectionist approach to model adaptation to changing
environments, showing that neural networks evolved within changing environments show
a greater propensity for learning than those that evolved in static conditions. This type
of learning is out of the scope of the models described in this thesis, in which we will
concentrate on single trial-and-error learning, with evaluation by comparison to a fitness
function.

2.3.1.1 Sudden Environmental Change

Not all environmental change takes place gradually. Major events such as volcanic eruptions
can impose a dramatic, unforeseen change on the demands and fitness pressures imposed
by the environment; the current changes taking place to the environment are already
causing rapid changes in selective pressures, evidenced from genetic and phenotypic
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studies (Charmantier et al., 2008; Matesanz et al., 2010).
Various bodies of research have come to different conclusions about the impact of an

unfavourable environment upon genetic diversity, with some indicating that a sudden
change to a suboptimal environment will cause a decrease in genetic variability, and other
studies showing an increase in variability (Hoffmann and Merilä, 1999). Several empirical
studies of invasive species have shown variance in plasticity when the population enters an
unfamiliar environment (Chapman et al., 2000; Lee et al., 2003); in general, species seem to
vary in their response to novel and traumatic environmental changes, with some exhibiting
increased plasticity, and others showing a more rapid genetic variance and selection.

A key theoretical study by Lande (2009) uses a quantitative genetics model to introduce
a sudden major environmental change on a population, against a background of a low level
of variance. The population is initially canalised, showing a high degree of specialisation
to its environment. After the perturbation, plasticity increases to accommodate the change,
allowing individuals the “breathing space” needed to survive the novel conditions, predict-
ing an optimal level of plasticity that is proportional to the amount of change experienced.
After the mean phenotype reaches the optimum, the required genes are slowly re-acquired,
restoring fitness to its previous level.

Referring back to Hallsson and Björklund (2012), a secondary interesting result of major
environmental fluctuations is that they have been shown to cause long-lasting effects on
a lineage’s phylogenetic development: selecting on the initial plasticity required to cope
with the change can actually result in a subsequent, maladaptive reduction in plasticity.

2.3.2 Task Complexity

Many selective pressures entail an individual being able to fulfil multiple discrete traits
simultaneously, or to be able to gradually develop increasingly fine-tuned responses to
complex behavioural demands.

An example is the tool use of New Caledonian crows (Kenward et al., 2006; Hunt and
Gray, 2003), who are able to acquire twigs and other such tool-making materials from the
surrounding environment, fashion them into probes by removing excess, and use them to
pry grubs and other prey from tree crevices.

In order to do so, these crows must possess a number of abilities:

• to locate source material for a tool;

• to fashion it into a suitable form;

• to locate a potential grub-dwelling crevice;

• to apply the tool appropriately and retrieve a grub

Each of these skills is of little use in isolation, and so it is unlikely that any of them
would arise innately as there would be no positive selection pressure. In conjunction,
however, they provide a significant competitive advantage.

Another example is the complex vocalisation of birdsong, whose forms exhibit a
spectrum of complexity (Marler, 1970; Marler and Slabbekoorn, 2004). Some aspects of vo-
calisation appear to be encoded innately, but more sophisticated repertoires of note density
and structure appear to be the result of practice and mimicry (Marler and Slabbekoorn,
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2004). Similarly, the foraging behaviours of honeybees can take an entire lifetime to fully
develop (Dukas and Visscher, 1994; Dukas, 2008), with evidence that efficiency continues
to increase throughout the individual’s lifespan.

In this thesis, we will describe the degree of behavioural requirements as an environ-
ment’s “task complexity”. From another perspective, a simpler task is one that can be
learned in a shorter period of time; a more complex task could take an entire generation
to learn. This may pose novel pressures on the learning modes that an individual should
adopt to optimally respond to the task.

2.3.3 Population Structure

A substantial amount of empirical research has been carried out on the population structure
of animal ecosystems. In a meta-analysis, Kudo and Dunbar (2001) review the findings
of 43 studies on the social network size of various different primate species. A key factor
when seeking to understand the nature of an animal’s relationships with its community
is its clique size, defined as the number of individuals that it regularly interacts with
directly – its primary social partners. Over this comparative research, the mean clique size
is 2.57, meaning that an agent’s number of regular interactants is a small proportion of the
collective population.

Beyond this immediate clique, links to other members of the species take place through
a transitive chain of relationships. An individual animal is connected to the rest of its
population via an indirect chain of transitive relations (Kudo and Dunbar, 2001, p717),
forming a sprawling social network with heterogeneous connectivity. This can results in
geographically bounded areas in which cultural traditions arise and persist, such as the
regional dialects of passerine birds (Freeberg, 2000) and region-specific variance between
the foraging tools constructed by New Caledonian crows (Hunt and Gray, 2003). These
local traits have been found to not necessarily be the product of local adaptation, but can be
result from arbitrary path-dependent lock-in: culturally ingrained traditions (Galef, 1990).

Even in an environment that is spatially homogeneous, the effects of a network of
neighbours should not be underestimated. Evolutionary graph theory provides numerous
examples of how population structure affects collective dynamics via local network effects
such as frequency-dependent selection (Lieberman et al., 2005; Szabó and Fáth, 2007;
Nowak, 2006). Here, heterogeneity is manifest in the differences between neighbours.
Evolutionary games on a graph have quite different outcomes to those in a well-mixed
environment. Most strikingly, in the prisoner’s dilemma, population structure makes it
possible for coooperation to evolve and persist as an evolutionarily stable strategy (Smith,
1982).

Lehmann et al. (2007) show that structuring an evolving population on a graph supports
the predictions of inclusive fitness theory, creating kin selection benefits. A further recent
result is that of Taylor et al. (2007), who use inclusive fitness analysis to show that cooper-
ative alleles are capable of invading a structured population regardless of the particular
form of structure used, demonstrating that altruism is likely to arise on a wider class
of structured populations than previously believed. This has important implications for
the understanding of population structure in modelling, as it implies that structure has
significant impact particular as regards the evolution of social interaction.
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2.3.4 Spatial Heterogeneity

Structuring a population through spatial locality can have significant effects on its dynamics.
As Lowen and Dunbar (1996) observe:

“In other areas of science where spatial models are in common use, it is now
well known that mean-field models exhibit significantly different properties
than their counterparts which explicitly account for local interactions. Indeed,
it has been demonstrated that remarkably complex behaviour (such as that of
the Ising model of magnetism or various population models) can emerge from
extremely simple rules of local interaction.” (Lowen and Dunbar, 1996)

Early work in optimal foraging theory showed that spatial heterogeneity could main-
tain genetic polymorphisms within a population (Brown, 2000; MacArthur and Pianka,
1966); subsequently, this would give rise to Maynard Smith and Price’s (1973) work on
evolutionarily stable strategies (ESS), in which multiple distinct behavioural groups can
support one another. Wiens (2000) describes several origins and types of environmental
heterogeneity, including spatial variance (pointwise autocorrelation), patterned variance
(wider relationships and regional patterns), compositional variance (in which patches differ
qualitatively as well as quantitatively), and locational variance (accounting for subjective
spatial location to determine property neighbourhoods).

Where culture is concerned, spatial structure is particularly important. Hunt and
Gray (2003) point to the spread of various forms of tools over the geography of the New
Caledonian crow population, observing that this is likely mediated through the cultural
transmission of traits from neighbour to neighbour. Likewise, theoretical investigations by
Boyd and Richerson (1985; 1988) have shown that the dynamics of cultural transmission
are markedly different when locality is introduced.

An explicit spatial context has been shown to favour the evolution of local structures
which reinforce evolutionary benefits (Silver and Di Paolo, 2006), enabling the survival of
traits that would otherwise not be supported by the environment. Odling-Smee et al. (2003)
similarly emphasise the importance of spatial structure for niche construction, in the case
that groups of individuals produce locally-clustered resource availability, creating a local
selective advantage for other species.

There are multiple factors present that determine the composition of an environment:
its elements, topology and patterning, and the availability of resources therein (Wiens,
2000). The majority of theoretical models, for simplicity, treat a population’s environment
as being homogeneous and unchanging. In many cases, this simplification is acceptable
(and indeed necessary for tractability).

However, spatial patterning matters. Indeed, Levin (1992) argues that “the problem of
pattern and scale is the central problem in ecology”.

The relevance of spatial heterogeneity in ecology was recognised by Gause (1934),
who conducted a series of lab experiments with microbial predator/prey duo Didinium
nasutum and Paramecium caudatum, accompanied by differential equations to support his
empirical findings. Growing populations of these microbes in a test tube, Gause found that
they would not continue to coexist indefinitely within a homogeneous substrate; either
predator or prey would eventually become extinct. When a spatial “refuge” was added
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Figure 2.4: From Gause (1934): Didinium nasutum devouring Paramecium cauda-
tum

– a compartment of different nutritional makeup – this heterogeneity would enable both
populations to persistence in survival concurrently, but with a behaviour that is no longer
broadly predictable from the oscillatory predictions of the Lotka-Volterra predator-prey
formula. As Gause observes, “the struggle for existence is [in a heterogeneous environment]
affected by a multiplicity of causes” (Gause, 1934, Chapter VI), irreducible to differential
equations. He identifies the phenomenon of path-dependence as being critical to the
system’s subsequent trajectory; minor differences in initial conditions can lead to radically
different outcomes due to small fluctuations being amplified and “locked in”.

These themes were taken up by Huffaker (1958), whose lab experiments involved con-
structing a series of heterogeneous environments by distributing obstacles and resources
over a short distance, over which mites and their predators were left to breed. In a homoge-
neous environment, populations quickly went to extinction as the prey was consumed and
the predator had no further food source. In a heterogeneous environment, the existence of
spatially distributed compartments with relatively slow dispersal between them allowed
for the continued persistence of small pockets of predators or prey, resulting in multiple
repeated oscillations of population growth and contraction.

The converse situation – heterogeneity of species within a homogeneous, wild envi-
ronment – was the focus of Hutchinson (1961), whose observations of phytoplankton
contradicted the knowledge of the field. Despite the apparent homogeneity of the open
seas, there is a vast spectrum of plankton species across the oceans, in environments that
are compositionally indistinguishable. Yet the principle of competitive exclusion formu-
lated by Gause (1934) argues the converse: that a homogeneous environment would result
in a complete reduction of evolutionary diversity. The initial coexistence of two species
competing for the same resources, goes the argument, will eventually result in one species
gaining the upper hand, and driving the other to extinction.

Why is this not happening in the case of plankton? Hutchinson offers a number of
speculations as to why this is taking place: gradients of light causing subtle variation
in the vertical plane; turbulence within the water; and differential predation in different
regions, itself a consequence of environmental heterogeneity further afield (that is, at the
boundaries of water and land). These theories have recently gained experimental support,
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with Károlyi et al. (2000) discussing the encouraged coexistence of species in turbulent
environments and Descamps-Julien and Gonzalez (2005) experimentally demonstrating the
possibility of coexistence within an environment which is subject to temporal fluctuations,
which may be driven by (for example) changing weather systems.

A number of recent bacterial studies have shown the impact of environmental hetero-
geneity over evolutionary timescales. The rapid reproductive life cycle of bacteria allows
for experiments that can span thousands of generations, showing long-term patterns that
would otherwise not be possible. Korona et al. (1994) shows that structured habitats can
give rise to greater phenotypic plasticity than those that are homogeneous; subcolonies of
variable mean fitness persisted, suggesting that they were trapped on suboptimal peaks in
the fitness landscape, supporting the existence of multi-peaked landscapes in real-world
scenarios. Rainey and Travisano (1998) conduct an elegant study showing that environmen-
tal heterogeneity can trigger and sustain evolutionary divergence, breeding bacteria in two
types of culture: one with multiple heterogeneous compartments, and one whose culture
was shaken, destroying any spatial structure. The spatially heterogeneous environment
was shown to produce and support genetic polymorphism, extending the previous work
of Gause et al onto evolutionary timescales.

Baythavong (2011) shows that, in plants, selection favours adaptive plasticity in fine-
grained, heterogeneous environments. In homogeneous environments, however, the result-
ing plasticity is low. This highlights two different solutions to environmental heterogeneity:
adaptive phenotypic plasticity Bradshaw (1965) and local adaptation. In fine-grained
habitats, such that an individual’s expected environment may differ from that of its par-
ents, plasticity should be expected; in coarser-grained habitats, in which an individual’s
environment may remain the same, we should expect an adaptive specialism to arise.

A number of theoretical models have been used to explore the effects of “niche construc-
tion”, in which an individual and its environment co-evolve simultaneously (Odling-Smee,
1988; Odling-Smee et al., 2003; Laland et al., 2000), dynamically modifying the selection
pressures. Laland et al (2000) use a two-locus population genetic model to demonstrate that
the ability of a population to alter its environment can dramatically alter selection processes,
enabling otherwise deleterious alleles to reach fixation, producing new polymorphisms,
and altering the timescales of selection.

Taylor (2004) uses niche construction as a basis to explore the drive towards complexity
in natural systems. This model incorporates a more sophisticated conception of an organ-
ism, and the functional traits that it must exhibit within its environment: both positive and
negative niche construction can take place, with true selective ‘niches’ opening up in the
interactions between organisms. The motivation behind this model is to determine whether
the process of niche construction drives an increase in the complexity of the organisms it
inhabits, which it answers in the affirmative. This result throws up the question of whether
other forms of dynamic – social interactions, for instance – are also under pressure to
increase in complexity within the context of niche construction.

Borenstein (2005) explores a specifically cultural form of niche construction. Here, a
structured series of populations (a “metapopulation”) with a pair of transmissible cultural
artefacts. They note that this configuration exhibits markedly different dynamics from
those seen in a well-mixed model, with variance between and within populations). Silver
and Di Paulo (2006) likewise adopt a spatial niche scenario, locating their agents on a finite,
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toroidal lattice, with the capability of engineering resource availabilities. A significant
conclusion here is that spatial effects were found to significantly increase the success of
niche-constructing alleles, with local clustering resulting in positive feedback loops of
selection. They conclude that “the stability of multi-species webs in natural populations
may increase as the complexity of species-environment interactions increases.”.

Comprehensive studies of the effects of spatial heterogeneity on learning-evolution
interactions are rare, due to the complexity and long timescales required to conduct such
studies, particularly on species sophisticated enough to support social learning. This
thesis hopes to extend the work described in this chapter with results that bring together
particular classes of environmental heterogeneity, making empirical predictions about the
dynamics that are likely to occur in real-world scenarios.

2.4 Landscape Metrics

Spatial analysis is the pursuit of insight into spatial ecological processes (Fortin et al.,
2006). It seeks to evaluate spatial structures upon well-defined axes by categorising and
quantifying their spatial properties. Ecological forces operating on biotic or abiotic matter
give rise to spatially-correlated effects on its organisation and organisation; matter may
be eroded, consumed, moved or repurposed (Wiens, 2000). Many forces at play are
geophysical – wind, rain, tides, earthquakes, volcanic eruptions – which can give rise to
massive, discontinuous disturbances that can have substantial impact on the environment
and its biotic inhabitants. Further environment heterogeneity is caused by the impact of the
animals that inhabit the land, with grazing, foraging and “ecosystem engineering” (Jones
and Lawton, 1995) causing changes to the landscape which can likewise have adaptive
ramifications for surrounding species (Odling-Smee et al., 2003).

In a natural ecosystem, place matters. Transplanting a colony of termites ten metres
to the north-east may maintain its internal population structure, but could move it into
an environment which is devoid of food sources or inhabited by predators. It may also
situate it in a landscape which is more variegated – possessing a wider array of different
substrata, and imposing different fitness demands – or into a region that is uniform across
its spatial extent. These different spatial formations can have significant ramifications for
the evolutionary and behavioural trajectories of a population (Rainey and Travisano, 1998;
Baythavong, 2011; Keymer et al., 2006).

The scale and extent of heterogeneity matters too; as it were, the heterogeneity of
heterogeneity. What impact does this have on evolution? In a study of plant lineages,
Baythavong (2011) characterises evolutionary trajectories over landscapes which have
different levels of heterogeneity in different areas, observing that:

“In fine grained environments, progeny are likely to experience an environment
different from that of their maternal parent, and selection should favour the
expression of adaptive phenotypic plasticity.” (Baythavong, 2011)

In the landscape ecology literature, there is a spectrum of different approaches to classi-
fying and describing empirical landscape heterogeneity. McGarigal (2006) distinguishes
between compositional metrics, which quantify features related to the variety of different
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resource types independent of spatial structure; and spatial configuration metrics, which
describe the spatial characteristics and arrangement of resources. We will limit our scope
to spatial configuration properties, as we will be restricting our investigation to one type of
resource.

The two dominant spatial configuration qualities appearing throughout the literature
(Riitters et al., 1995; Li and Reynolds, 1995; McGarigal, 2006) are fragmentation and patchiness.

Fragmentation (or its inverse, contagion) is the most common landscape metric used in
quantifying the heterogeneity of discrete- space systems (Gustafson, 1998). It describes
the tendency of patches to take the form of large, singular clumps (Frohn, 1998; Li and
Reynolds, 1993) versus a dispersed distribution of smaller areas. An environment with a
small fragmentation value may be made up of one or two monolithic zones of similar land
usage. If fragmentation is high, there is likely to be a large number of small distinct areas.
This classification is the inverse of contagion: a landscape with high contagion is grouped
into a few large areas. As with many aspects of landscape classification (Frohn, 1998) this
distinction is a matter of scale. At high magnification, or for a small organism, a particular
factor may appear to have a low fragmentation value (or high contagion), whereas at low
magnification it will appear to have high fragmentation (low contagion).

Patchiness1 measures the degree of dissimilarity between neighbouring patches, deter-
mined by Romme’s relative patchiness index, or RPI (Li and Reynolds, 1994; Romme, 1982).
The greater the number of disparate patch types neighbouring each other, and the greater
the degree of disparity, the higher the resultant RPI value. In a context characterised by
high patchiness, there is a greater chance of moving from a familiar environment to one
which is markedly less familiar. With a low RPI, conversely, we should expect to move
relatively smoothly across terrain without major discontinuities.

Summary

This chapter has reviewed the background literature on evolution, learning and social
behaviour, subsequently examining the impact that spatio-temporal heterogeneity has on
the evolutionary dynamics of a population, and reviewing key environmental metrics
drawn from landscape ecology and spatial analysis.

The following chapters will proceed to unify these ideas, describing a model that
represents the evolutionary and learning capacities described in §2.2. This will be extended
with progressively more detailed form of environmental structure to understand and
quantify the impact of each of the four key environmental factors described in §2.3, latterly
by constructing artificial environments following the landscape metrics described in §2.4.

1It should be noted that many writers use “patchiness” as a term to denote general spatial heterogeneity
(Marquet et al., 1993; Grünbaum, 2012). We intend it here in its more technically specific sense; see Romme (1982),
Li and Reynolds (1995).
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Chapter 3: Baseline Model

3.1 Overview

In this chapter, we shall describe a computational individual-based model that allows us
to explore the dynamics of a population that is able to evolve, learn, and socially interact.
This baseline model acts as the foundation for a series of experiments in the following
chapters (§4, §5 and §6), which progressively introduce novel elements to the model to
pose specific questions and understand the impact of particular environmental factors on
the optimal modes of information acquisition. This will include introducing population
structure and locality, between-agent environmental heterogeneity, motion through space,
and multiple environmental fitness objectives.

The present chapter begins by establishing a baseline model specification, Model /0,
which incorporates the minimal set of properties needed within an individual-based simula-
tion in which evolution and learning interact. The objective is to introduce as few variables
as possible, resulting in a model with a maximal level of abstraction, thus applicable to the
widest possible range of real-world scenarios. Model /0 does not incorporate any ideas of
topographical structure. Each individual can interact with any other within the population.

In the baseline case, the model is limited in its scope. It is comprised of a population
of agents, each of which possesses multiple properties: a genotype, which determines
the individual’s innate fitness; a phenotype, determining its subsequent fitness, mutable
throughout in its lifetime; and behavioural characteristics which determine individual
tendencies towards innate behaviour, individual learning and social learning. By differential
selection and asexual reproduction, the population evolves to a steady state. The object of
study of this thesis is the dynamics of interaction between these variables and the regimes
that they pass through, as a consequence of the particular qualities of the environment that
they reside within.

We begin in Section 3.2 by formally defining Model /0 and its constants, variables, and
state change equations. We provide a schematic overview of the model in pseudocode
(Section 3.3), and proceed to comment on the implications, assumptions and limitations of
this baseline model (Section 3.4).
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Figure 3.1: Representation of the space of B-bit fitness functions as a B-
dimensional hypercube, for B = 3

3.2 Model Specification

We will now describe the components of the agent-based model used to explore these
ideas1. An environment E consists of a single B-bit string, representing the ‘objective’ task
that an individual must achieve to obtain maximal fitness: E ∈ {0, 1}B. The current
environmental state can therefore be considered as a vertex on an B-dimensional hypercube
(Figure 3.1).

The environment is inhabited by a population of N agents, each of which has the
following properties:

• bevo, bind, bsoc ∈ [0, 1] – behavioural traits determining the propensity towards geneti-
cally innate behaviour, individual learning, and social learning. These are collectively
normalised to sum to unity, and remain fixed throughout an agent’s lifetime.

• g ∈ {0, 1}B – genotype, a B-bit string that establishes the agent’s capability to fulfil the
environment’s objective. The genotype remains fixed throughout an agent’s lifetime.

• p ∈ {0, 1}B – phenotype, a B-bit string that is initialised equal to g when an agent
is born, and subsequently subject to modification through individual and social
learning. If p is equal to E then the agent’s fitness is equal to 1.

• φ – current fitness, determined based on the agent’s activity in the previous timestep.

An agent’s current phenotype determines how well it fulfils the environment’s objective
task, based on its Hamming distance from E.

1For all subsequent parameter values, see Table 3.1.
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3.2.1 Actions and Learning

Every timestep, each agent selects a behavioural mode according to a weighted random
choice from {bevo, bind, bsoc}:

• bevo – innate behaviour: act according to the agent’s current phenotype

• bind – individual learning: act according to the agent’s current phenotype, with a
single bit toggled at random

• bsoc – social learning: act according to the agent’s current phenotype, with a single
bit copied from a neighbour using fitness-proportionate (roulette wheel) selection,
weighted by their fitness φ. With a probability pnoise, the bit may be copied erroneously
(toggled from 0 → 1 or 1 → 0). This models the imperfection and noise present
in real-world imitative learning: a behaviour may be only partially observed, or
reproduced incorrectly.

If bind or bsoc is employed and the resultant action gives a higher payoff than the
agent’s own current phenotype, the corresponding bit in p is replaced by the new action:
discovering (or imitating) a successful new trait results in its being incorporated into
the agent’s behavioural roster. This reflects the effects of phenotypic plasticity, or the
incorporation of new traits during an organism’s lifetime.

In the case of bsoc, weighting the exemplar by their φ value reflects a tendency to-
wards mimicking those organisms which are perceived as being fittest (a “copy-successful-
individuals” strategy (Laland, 2004), as observed in avian, chimpanzee and bat societies).
At present, the agent’s interaction neighbourhood comprises of the entire population. This
will be refined in subsequent iterations of the model.

The agent’s fitness is determined according to the following rule:

φ =

(
1− H(p, E)

B

)α−1

(3.1)

where H denotes the Hamming distance between two bit strings. Dividing by B and
subtracting from 1 normalises the fitness value to [0, 1], and transforms it from a distance
to a proximity measure. The exponential of α is used to determine the fitness differential
between perfect and almost-perfect task fulfilment (Figure 3.3): a lower value of α means
that payoffs fall more rapidly with distance. With α = 1, scaling is linear in distance. As α

tends to zero, fitness becomes negligible unless every one of the traits is realised, similar to
Hinton and Nowlan (1987) and Papineau (2005).

In general, if an agent’s g precisely matches the environmental objective E, its fitness
becomes the maximal value of 1. If g is precisely the complement of E, its fitness is 0.

3.2.2 Reproduction

Each timestep, reproduction occurs following a birth-death process. A single agent is
selected using fitness-proportionate selection based upon fitness values φ, and reproduces
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Figure 3.2: Deriving fitness from an individual’s phenotype. Fitness is derived
by first calculating a normalised proximity value to the bit string of the cur-
rent environment E. This value is raised to the power of α−1, representing an
exponential benefit in possessing multiple traits. In the above example, α = 0.5.

Variable Value Comments

N 64 Population size

B 16 Number of bits in E
α 0.01 Rate of fitness dropoff based on task proximity (Figure 3.3)

µ 0.05 s.d. of mutation as applied to bevo, bind, bsoc

pswitch 0.01 Probability of a single environmental fluctuation

pnoise 0.25 Probability of incorrect observation during mimicking

pmut 0.01 Probability of sustaining a mutation per gene

trials 50 Number of repeats of each trial, before averaging results

Table 3.1: Standard parameter values used in the baseline model. Parameter
values per trial can be found in Appendix B.

asexually2. Its offspring has an identical genotype, subject to each bit of g mutating (that is,
flipping from 1→ 0 or 0→ 1) with small probability pmut. Behavioural traits bevo, bind, bsoc

are modified by a zero-mean Gaussian noise function, standard deviation µ, and clipped to
[0, 1]. These are again collectively normalised to unity. The child replaces another member
of the population, selected uniformly randomly.

Discussion of Model Parameters

Some of the model parameters justify some further commentary and contextual explanation.

2Sexual recombination was considered as a reproductive strategy, as an effective method of finding ‘middle
ground’ locations between points on a complex fitness landscape. Given the single-peaked landscape adopted in
this model, we focus on clonal reproduction for the sake of simplicity. A number of recombinative trials indicated
that the results would not be qualitatively different.
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Figure 3.3: Proximity function xα−1
for differing values of α. Smaller α gives a

sharper fitness differential at larger Hamming distances.

N: Population size

As a Moran process, the population size represented in the model is fixed. See §7.4 for
discussions of how this could be relaxed for future work; Borg and Channon (2012) extends
our model with variable population size to make further conclusions about population
collapse in variable environments.

B: Task complexity

B denotes the number of bits within the environment, and correspondingly the number
of distinct alleles within an individual’s genotype. This can be seen as modelling “task
complexity”, the number of distinct subtraits that must be acquired to reach maximal
fitness. A higher level of B means that a greater learning time is required to achieve
maximal fitness.

α: Fitness dropoff

α ∈ {0, 1} determines the steepness of the fitness function experienced by an individual; as
α tends to zero, fitness becomes negligible unless every one of the traits is realised. This is
similar to the approach taken in Hinton and Nowlan (1987).

pnoise: Social learning error

Social learning is an imperfect process and may result in maladaptive mimicry, either by
individuals copying a non-beneficial trait or by failing to mimic a trait properly (Galef and
Laland, 2005). This variable models the latter, imposing an implicit cost on social learning
by adding a degree of noise to the copying process such that an individual may mimic a
trait incorrectly, inverting the corresponding bit within its phenotype.
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pswitch: Rate of environmental change

Models the stochastic environmental change needed to represent changing environments.
This variable introduces gradual variability to the environment, determining the probability
that a trait required within the environmental fitness function may invert, changing the
selection pressure by a single bit.
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3.3 Pseudocode

Below is a pseudocode formulation of the model described in §3.2.

environment ← 1B

agents ← create_agents(N)

foreach agent in agents:

agent.randomise_behaviour_weights()

agent.randomise_genotype()

agent.phenotype ← agent.genotype

agent.current_fitness ← calculate_fitness(agent.phenotype, environment)

foreach timestep in 1 ... steps:

foreach agent in agents:

behaviour ← agent.roulette_wheel(bevo, bind, bsoc)

if behaviour = bevo:

agent.new_fitness ← calculate_fitness(agent.phenotype, environment)

else if behaviour = bind:

agent.toggle_random_phenotype_bit()

agent.new_fitness ← calculate_fitness(agent.phenotype, environment)

if agent.new_fitness < agent.current_fitness:

agent.revert_to_previous_phenotype()

else if behaviour = bsoc:

neighbour ← agent.select_neighbour_by_fitness()

agent.copy_random_phenotype_bit(neighbour)

if coin_toss(p_noise):

agent.toggle_last_copied_bit()

agent.new_fitness ← calculate_fitness(agent.phenotype, environment)

if agent.new_fitness < agent.current_fitness:

agent.revert_to_previous_phenotype()

agent.current_fitness ← agent.new_fitness

parent ← agents.select_weighted_by_fitness()

child ← parent.reproduce()

foreach behaviour in child.behaviour_weights:

behaviour <- behaviour + gaussian(µ)

foreach gene in child.genotype:

if coin_toss(pmut):

gene.toggle()

child.phenotype ← child.genotype

agents.remove_random()

agents.add(child)

if coin_toss(pswitch):

environment.toggle_random_bit()
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3.4 Commentary

There are a number of qualities to observe about Model /0 and its relationship with existing
theoretical and empirical work.

The present model takes the form of a Moran process (Moran, 1958; Lieberman et al.,
2005; Nowak, 2006): its population size is constant, with one asexual (haploid) reproduction
action each generation. Birth-death replacement is used to select a parent agent according
to proportionate fitness, creating a new agent which displaces a random peer. Though
a clear simplification of the variable population structures and reproductive schemes of
a biological scenario, this mode of operation is common within the literature to simplify
analysis whilst holding other conditions steady (Taylor and Fudenberg, 2004).

Genetic inheritance occurs vertically, from parent to offspring. Phenotypic modifications
made throughout an agent’s lifetime are not passed onwards at reproduction. This assumes
that any epigenetic inheritance through the development period – such as in the case of
DNA methylation (Jablonka and Lamb, 2005) – is negligible. Horizontal and oblique (that
is, cross-generational (Best, 1999)) transfer of functional information, however, is possible
through the mechanism of cultural inheritance. This is a crucial part of the model design,
enabling the possibility of a cumulative culture which is able to act as a collective memory
for functional traits (Avital and Jablonka, 2000; Laland and Hoppitt, 2003; Galef, 1990,
1976).

This model imposes no explicit cost for the maintenance of individual or social learning
apparatus. The cost is incurred purely through the learning noise implicit in each of these
mechanisms. With trial-and-error individual learning bind, a fit individual risks toggling
a “correct” phenotypic bit and descending the fitness landscape. In the case of social
learning bsoc, the chance of selecting a correct bit may be higher, given a sufficiently fit peer
group; however, the error probability pnoise introduces the possibility of mimicking a trait
incorrectly and decreasing one’s own fitness. This models the observational imperfection
present within animal social learning (Heyes and Galef Jr, 1996). In the wild, phenotypic
plasticity does impose energetic and evolutionary costs in terms of the cellular machinery
needed to maintain it (Scheiner, 1993; Moran, 1992). We avoid costs here partly for
intellectual parsimony, and partly to demonstrate that the interesting range of reactions
described in the below results can occur simply with learning error as their sole cost.

There is no scarcity of resources in this model. Resources are, at first pass, infinite and
homogeneous; the payoff for attaining the peak of the fitness function remains identical for
every agent. The between-agent competition is therefore purely a matter of maximising
one’s own fit to the environmental objective.

Each individual can engage in individual and social learning alongside innate behaviour,
statistically modulated by their behavioural tendencies. This means that behavioural
tendencies are not mutually exclusive but are always exhibited in different strengths.
Game-theoretical approaches frequently pit discrete strategies against one another (Axelrod
and Hamilton, 1981) and observe the evolution of evolutionarily stable strategies (Smith
and Price, 1973). Here, the strategy emerges within individuals of the population, so we
may expect to see individuals evolve to equilibria involving primary and secondary modes
of learning. That is to say, if every individual can engage in a low-level of individual
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learning, we may not expect to see such adversarial oppositions as producer-scrounger
dynamics cropping up (Barnard and Sibly, 1981; Vickery et al., 1991).

This motivation also justifies the disparity between behavioural tendencies, which
are modelled as continuous traits, and genotype/phenotype, which are modelled as
discrete units. In the interests of parsimony, we would prefer to model all ecological
qualities as discrete units where possible. However, the present research is particularly
examining tendencies towards innate behaviour and modes of learning. If each individual
only possesses one fixed behavioural mode throughout its lifetime – to act according to its
genes, or to conduct trial-and-error learning – it is likely that a population would rapidly
sweep to a single-behaviour equilibrium which it would never be able to escape.

These modelling paradigms were simply seen as more fitting for each case: genes
require individual inheritance, whereas, in this model, we want to test a continuum
of learning behaviours, from pure-inheritance to pure-learning and every combination
between.

3.5 Summary

In this chapter, we described a novel individual-based model that models evolution,
learning and mimicry, in a polygenic population with evolvable tendencies towards each
behavioural mode (§3.2). We formulated the execution of the model in pseudocode (§3.3),
and commented on its assumptions, relationships, and limitations (§3.4).
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Chapter 4: Unstructured Populations

4.1 Overview

In Chapter 3, we formally defined a model of evolution and learning.
In this chapter, we begin by examining the behaviours of this model in static, un-

structured environments, to establish a baseline set of dynamics that later experimental
results can be compared against (§4.3.1). We then vary the first two environmental factors
defined in §1.3 to understand their likely effects on optimal learning strategies: variability,
in which the fitness pressures imposed by the environment gradually change over time
(§4.3.2); and task complexity, the number of subtraits required to reach optimal fitness
(§4.3.3).

We then look at how these two environmental factors interact, conducting a two-
dimensional parameter sweep that enables us to show the dominant learning regimes
across different levels of environmental complexity and rates of environmental change
(§4.3.4).

4.2 Key Questions

Prior to exploring more complex environments in later chapters, our focus will begin on
unstructured populations in spatially homogeneous environments. The primary objective
is to gain an understanding of the dynamics of learning, evolution and sociality within a
static environment, and subsequently within environments which are subject to different
rates of change. This includes environments in which a sudden extreme perturbation takes
place, emulating traumatic natural events such as an earthquake or volcanic eruption.

Alongside environmental fluctuations, we will examine a population’s response to
different levels of task complexity, measured in the number of phenotypic bits required to
perform a task at optimal fitness. A simple environment may be comprised of a few bits of
complexity, with more complex environments requiring many phenotypic bits to attain
peak fitness.

We will finally explore how assumptions and strategies implicit within this model
affect its macro dynamics, including normative learning modes and trait-selective learning
regimes.

This chapter covers the first two environmental factors defined in §1.3: variability and
task complexity.
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Variability

A common view is that genetic evolution, social learning and individual learning are
adaptively advantageous because they operate at different timescales within the evolution-
ary and ontogenic process (Cavalli-Sforza, 1981; Boyd and Richerson, 1985; Henrich and
McElreath, 2003; Borenstein et al., 2008; Wakano et al., 2004).

We seek firstly to corroborate or challenge these results, and secondly to interrogate
how they are affected by different types of environment.

Do these regimes hold in general, and how robust are they under different levels of
environmental fluctuation and task complexity? Do transient behaviours occur which
recede to a new equilibrium state? How do the interactions between individual and
social learning affect these timescales and environment-specific trends? Do we expect to
see multiple different learning strategies persist concurrently, or for strategies to reach
extinction in certain settings?

This line of inquiry responds to empirical studies (Galef, 1976) and prior theoretical
models that study the regimes of environmental change fostering different types of plas-
ticity, whether behavioural (Levins, 1968; Templeton and Rothman, 1978; Lande, 2009) or
cultural (Kendal et al., 2009; Feldman et al., 1996; Boyd and Richerson, 1988; Wakano et al.,
2004).

Task Complexity

The second environmental explored in this chapter is the degree of task complexity, as
exemplified by the examples of tool usage (Kenward et al., 2006; Hunt and Gray, 2003) and
foraging tasks (Dukas and Visscher, 1994; Dukas, 2008) discussed in §2.3.2.

By imposing a range of complexity values, we hope to understand how the degree of
difficulty posed by an environmental task – and thus the learning time that it requires to
perfect – have on learning and evolution.

4.3 Results

As a starting point for investigating the interactions between the elements of the model, this
analysis proceeds by introducing concepts gradually, with the intention of understanding
fundamental interactions. Each experiment is introduced with its structure and motivation,
and followed by a brief interpretation of results. Experiments are headed by their key
findings.

In each of the following experiments, we begin by initialising the environment’s objective
to 1B (following Hinton and Nowlan (1987)). Behavioural traits and genotypes are initialised
to uniformly random values for each agent. Each experiment is left to unfold until its
collective traits have reached stability. This is akin to introducing a mixed, unadapted
population to a novel environment and allowing it to collectively evolve until it reaches a
functionally adapted state.

Error bars indicate 95% confidence intervals (p < 0.05), with the number of repeat trials
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per experiment given in Appendix B1 . Default parameter values are given in Table 3.1; the
precise values used in each experiment are also given in Appendix B.

4.3.1 Baseline Dynamics

We begin by exploring the dynamics of the model in a static environment, in which the
environmental objective remains unaltered through the entire life cycle of the experiment.
An organism that possesses the ‘perfect’ phenotype will be able to maintain maximal
fitness, at least as long as it continues to act according to this phenotype.

The scenario of a completely static environment is one that is implausible in the
wild, given that any organism modifies its environment in each interaction with it; real-
world environments are subject to continuous change. It should be considered here as
demonstrating potential behaviours within laboratory conditions, or within an environment
whose rate of change is imperceptible relative to the short lifespan of its inhabitants.

4.3.1.1 Social learning initially dominates, subsequently giving way to innate behaviour

The changing distribution of behavioural traits over time in a static environment is shown
in Figure 4.1. At initialisation, each trait – bevo, bind and bsoc – has a mean value of 1

3
across the population, as they are assigned uniformly random value per organism. As the
population evolves, the mean behavioural traits evolve based on the relative fitness values
that they confer.

The dynamics can be divided into three phases. Between steps 1–50000, the population
is dominated by social learners, rapidly rising to a peak at t = 10000, and then gradually
yielding to innate behaviour. From steps 50000–150000, bevo continues to rise in dominance.
Beyond step 150000, a stable optimum has been reached, with innate behaviour reaching a
peak mean value of 0.75. Analysis of the population within these experiments reveals that
a single unified group emerges with behavioural values distributed around these means.

Parameter values (4.3.1.1)
N B α µ pswitch pnoise trials
64 32 0.01 0.05 0.00 0.25 100

The trend of social learning giving way to innate behaviour is a instance of genetic
assimilation (Waddington, 1953; Crispo, 2007; Pigliucci et al., 2006) taking place. In an
unfamiliar environment, a population initially resorts to phenotypic plasticity (in this case,
social learning) to accumulate information about the world that has not been encoded into
their genotype. An individual copies the actions of its more successful peers to gain an
immediate fitness boost. As generations progress, some surviving organisms develop the
underlying set of genetic mutations needed to succeed in the environment innately. As
innate behaviour does not include the noise-induced costs of learning, the predisposition
towards genetic instinct is less costly, and gradually takes hold over the population.

Put differently, an evolutionary progression takes place towards individuals who are
predisposed towards phenotypically accommodating the adaptive trait. Like the heat-
shocked drosophila of Waddington’s (1953) experiments, individuals are selected whose

1Typically 100 for single experiments.
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Figure 4.1: Static environment: Behaviour distributions over time

phenotypic reaction norms require the smallest employment of plasticity to exhibit the trait
in question (Pigliucci et al., 2006).

Two properties of these dynamics are unexpected on first glance: the extended period
of time taken to reach the population optimum, and the continued presence of low-level
bsoc and bind traits. Both of these artefacts are a consequence of the relatively small cost of
social and individual learning in this model. Neither bear an explicit constitutive cost, but
have the caveat that, if an agent is already close to the optimum, testing a random new task
or copying a peer may result in an act that is detrimental to the agent’s native phenotype.

Sharpening these costs by reducing payoff scaling factor α results in a more rapid
convergence to a predominantly bevo population (see A.1.2 in Appendix A). However, this
simultaneously reduces the selection pressure on lifetime learning, which introduces a
penalty in fluctuating environments.

Within this static environment, there is clear evidence of a genetic assimilation process:
phenotypically plastic individuals first out-compete their peers as they scramble to higher
fitness through learning and social exchange, and are subsequently replaced by innate
mutants, who do not bear the costs of exploration. It should be noted that, by initialising
genotypes to random values, this is strictly an artificial example: in a natural ecosystem,
genetic information would begin in a state that is correlated with the environment.

It may also seem surprising that there is little trace of individual learning in this
experiment. However, given each agent’s uniformly random genotype, there is no need
for innovation within this context as all of the successful traits (1-bits) are already present
within the population, ready to be socially transmitted and adopted.

4.3.1.2 Phenotypic fitness rapidly converges, temporarily shielding genotypic fitness

Figure 4.2 illustrates the mean Hamming distance between E and the population’s geno-
types and phenotypes. We see evidence for genetic shielding taking place (Wright, 1931;
Anderson, 1995; Mayley, 1997), masking genotypic selective forces; the population’s abil-
ity to phenotypically adapt to a niche reduces the pressure on genetic evolution. The
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prevalence of learning behaviours means that the population’s innate (genetic) fitness lags
significantly behind the fitness that they express throughout their lifetimes, by utilising
phenotypic plasticity to override their less-fit innate states. Eventually, as genetic assimila-
tion completes, genotype and phenotype almost coincide. A small, statistically significant
difference does remain (ANOVA, p < 0.05), indicating that a low level of genetic shielding
persists even within a static environment.

Parameter values (4.3.1.2)
N B α µ pswitch pnoise trials
64 32 0.01 0.05 0.00 0.25 100
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Figure 4.2: Static environment: Genotypic and phenotypic distance from E

It is interesting to note that there is an immediate leap in genotypic fitness at the very
start of the experiment, dropping in a few generations from its starting value of 0.5 to
around 0.35. This is because genetic shielding has not yet kicked in; at the start of the
experiment, many individuals have a larger bevo value, which imposes increased pressure
on attaining a better genotypic value. As soon as social learning prevails, this pressure
drops, which rapidly slows the rate at which genotypic assimilation occurs.

We can therefore infer that it is the differential between bevo and bind/bsoc that gives
rise to the selective pressure on the individual’s genotype. An individual that exercises
significant behavioural plasticity has a lowered genotypic selective pressure, which slows
the rate of genetic convergence (Mayley, 1996).

4.3.1.3 Environmental perturbation results in a double Baldwin effect

We repeat the experiment as per the previous section, introducing an environmental
perturbation after equilibrium has been attained. This mimics the effect of a traumatic
change in the organism’s surrounding landscape, in which a population is ill-adapted to
their new environmental context (Lande, 2009). In the model, this is achieved by inverting
E so that fit individuals immediately become maladapted.

As shown in Figure 4.3, this results in a temporary burst of individual learning followed
by a longer wave of social learning, bringing up phenotypic fitness through plasticity
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whilst evolution takes time to work out the necessary series of mutations. In a sense, this
is a double Baldwin effect: the traits adopted by individual learning are assimilated into
the cultural memory; and subsequently, socially-learned traits are assimilated into the
long-term memory of the genotype.

Parameter values (4.3.1.3)
N B α µ pswitch pnoise trials
64 32 0.01 0.05 0.00 0.25 100
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Figure 4.3: Introducing an environmental perturbation at t = 2e + 05. Subse-
quently, organisms are selected for increased learning tendencies.

This change takes place in three phases. Individual, exploratory learners first take
precedence (t = 200, 000→ 210, 000); at this early stage, mimicking one’s neighbours is just
as likely to result in learning incorrectly, as they are equally likely to be maladapted and
possess outdated information about the environment.

After this peak, beneficial traits have become sufficiently prevalent to promote the use
of social information. Social learning dominates for a long period (t = 210, 000→ 270, 000),
and finally genetic assimilation takes place, returning to evolutionary stability (t = 400, 000).

Figure 4.4 demonstrates an accentuated version of the genetic shielding shown previ-
ously. Again, a rise in learning frequency means that phenotypic fitness improves more
rapidly than in the genotype.

Continuing to examine Figure 4.4, two more observations may be made. The immediate,
biphasic drop in genotypic distance observed in the first half of the experiment (and
in Figure 4.2) is not visible in the second half. This supports the hypothesis stated in
Section 4.3.1.2 that this drop is due to population’s initial propensity towards innate
behaviour, and the positive selection pressure that it exerts towards beneficial genetic traits.

Likewise, the rapid, biphasic phenotypic adaption at the beginning of the experiment is
not seen following the perturbation, with the population taking a longer time (and following
a smooth, exponential curve) to return to optimal fitness. Successful phenotypic traits are
also missing from the population after the perturbation, meaning that the rapid behavioural
adaptation offered by social learning is not possible. We can thus conclude that the genetic
and behavioural homogeneity produced by a period of extended environmental stasis gives
rise to maladaptivity in the population’s ability to recover from a major environmental
trauma.
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Figure 4.4: Genotypic and phenotypic distances from optimum following a
perturbation, where 0 represents a perfect match with the environmental target.
Phenotypic fitness returns to a stable level faster than genotypic fitness, reflecting
the more rapid adaptive rate of lifetime learning.

These conclusions support the theoretical results of Lande (2009), who demonstrates
that the slope of a reaction norm increases after a major environmental change, increasing
plasticity for a period to accommodate the unpredictable environmental demands, before
plasticity gradually falls away in the process of genetic assimilation. Our results interpose
social learning interposes itself as a third adaptive recovery mechanism after a major
environmental change, bootstrapping genetic evolution by allowing positive traits to spread
horizontally and increasing the population’s mean fitness.

4.3.2 Factor 1: Variability

We now extend the above by introducing regular environmental fluctuations. Each time
step, a single bit of the environmental task may be toggled, according to a small probability
pswitch. A value of pswitch = 0.01 reflects an expected period of 100 timesteps between
1-bit fluctuations. Ecologically, this models a gradual change in environmental conditions,
altering the selective landscape within the lifetime of an individual.

4.3.2.1 Increasing instability encourages social learning at low rates of change, and
individual learning at high rates of change

With a moderate fluctuation rate (pswitch = 0.01), the optimal combination of strategies is
markedly different to that in a fixed environment (Figure 4.5). Social learning dominates,
reflecting the benefit of lifetime plasticity in an uncertain environment. In this instance,
genetic shielding appears to be highly evident (Figure 4.6), with the genotype’s hamming
distance from E vacillating between 0.44 and 0.49. This suggests that changes in the
genotype are occurring almost solely due to genetic drift.

In this population, we can infer that the predominant method of information transfer
is horizontal: the cultural transmission of traits from peer to peer via social learning.
However, this is insufficient to acquire new traits alone; a low, baseline level of individual
learning continues to exist, which acts as a source of functional innovation after a change
in the environment does occur.
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There is little pressure on innate behaviour to rise in dominance, as acting innately will
result in functional behaviours which soon become outdated; even for an organism whose
genotype currently matches E precisely, the environment will have altered in an expected
time of 100 steps (as pswitch = 0.01, the expected time of next fluctuation is 1

0.01 = 100), at
which point the genotype again lapses into suboptimality.

In a population size of N = 64, the expected lifespan of an organism is 64 steps,
meaning that an environmental fluctuation should be expected within two generations.
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Figure 4.5: Fluctuating environment: Behaviour distributions over time

Parameter values (4.3.2.1)
N B α µ pswitch pnoise trials
64 32 0.01 0.05 0.01 0.25 100

0.0

0.1

0.2

0.3

0.4

0.5

0 50000 100000 150000 200000

time

di
st

an
ce

 f
ro

m
 E

genotype

phenotype

Figure 4.6: Fluctuating environment: Genotypic and phenotypic fitness over
time

Figure 4.7 indicates the learning modes taking place at equilibrium over a range of
fluctuation rates. It is interesting to note that three distinct regimes take place, without
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substantial gradation between them:

1. at slow rates of environmental change (pswitch ≤ 1e − 04: less than 1 expected
fluctuation per 150 generations), innate behaviour is dominant.

2. at moderate rates of environmental change (1e − 04 < pswitch < 0.05: less than 1
expected fluctuation per generation), social learning is dominant; genetic evolution
is not sufficiently fast to keep up with the changing fitness function, but there is a
reasonable chance that surrounding peers will possess the correct traits (having also
been learned via social transmission.)

3. at fast rates of environmental change (pswitch ≥ 0.05: at least 1 expected fluctuation
per generation), individual learning is dominant; at rates of change this fast, it
becomes likely that shared social information will be outdated, and so it is optimum
to resort to individual trial-and-error learning.
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Figure 4.7: Learning modes at equilibrium across a range of pswitch values.

This result broadly supports the results of previous theoretical work that has described
analogous learning regimes at slow, moderate and fast timescales (Cavalli-Sforza, 1981;
Boyd and Richerson, 1985; Henrich and McElreath, 2003; Wakano and Aoki, 2006; Borenstein
et al., 2008; Wakano et al., 2004). Our results highlight a novel aspect of this trend which is
that these three phases are not discrete but there is a continuous overlap between them:
note that social learning gradually diminishes in dominance between pswitch values of
0.01→ 0.5.

Having corroborated an existing result from the literature, we will now explore the
ways in which these regimes are modified by different levels of environmental change and
task complexity.

52



4.3. RESULTS

4.3.3 Factor 2: Task Complexity

The previous experiments all assume a constant environment task complexity, or B value:
the number of phenotypic bits that must be correct to reach the peak of the unimodal
fitness function. We can simulate modifying the complexity of the environmental objective
by changing the value of B. Increasing B means that a greater number of subtraits must be
obtained simultaneously to reach the peak of the fitness landscape. Conversely, an unfit
agent can be so many bits away from the objective that any differential that it gains by
obtaining one more bit becomes vanishingly small.

4.3.3.1 Increasing task complexity causes a phase shift from innate behaviour to indi-
vidual learning

Parameter values (4.3.3.1)
N B α µ pswitch pnoise trials
64 - 0.01 0.05 0.00 0.25 50

0.0

0.2

0.4

0.6

0.8

2 4 8 16 32 64

128

experiment

va
lu

e evo

ind

soc

Figure 4.8: Changing B: Behavioural distributions at equilibrium

As seen in Figure 4.8, the results are surprising. At low task complexity (B < 64), innate
behaviour consistently dominates. Beyond B ≥ 64 is a second phase in which individual
learning takes its place as the prevalent mode of learning. At equilibrium, social learning
remains relatively infrequent at all levels of task complexity in a static environment.

Although the equilibrium states are similar for the low-B cases, the dynamics prior to
this point differ substantially. Just as in Figure 4.1, social learning subsides and innate
behaviour proliferates, with a determinate point at which mean bevo > bsoc within the
population. We shall call the point at which this crossover occurs the assimilation time, as
it represents the point at which genetic assimilation can be said to have taken place. In
Figure 4.1, this takes place around t = 50000.

4.3.3.2 Learning Time Analysis

The reason for this two-phase distribution requires some further analysis. For the below
discussion, we set aside social learning altogether and restrict our discussion to the pure
interactions of evolution and individual learning.
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Figure 4.9: Changing B: Genotypic and phenotypic fitness at equilibrium

Consider an individual learner with a strongly unimodal fitness function of B bits,
beginning from a genotype of minimal fitness. The learning process is a case of sampling
repeatedly with replacement from D = 1, 2, ..., B. This is a case of a known problem in
probability theory known as the Coupon Collector’s Problem.

Let Vn denote the number of distinct selections in the first n learning attempts: that is,
the number of different bits successfully learned. We are then interested in the random
variable Wk, which denotes the distribution of samples needed to learn k bits. To reach
optimal fitness (that is, setting all B bits of the phenotype to 1), let k = B.

WB must equal the minimum number of trials needed for all B bits to be learned:

WB = min{n ∈N+ : Vn = B} (4.1)

Wk is equivalent to a sum of independent random variables Z = (Z1, Z2, ..., ZB), where
Zi is the number of samples needed to go from i− 1 distinct bits learned to i distinct bits
learned. Each Zi is a Bernoulli process whose probability is determined by the number of
bits left to learn. It follows the geometric distribution:

Zi ∼ Geo
(

B− i + 1
B

)
(4.2)

From the moment generating functions of the geometric distribution, the expected
(mean) value of Zi can be derived. This gives the expected number of trials to learn the ith

bit of the genotype.

E(Zi) =
B

B− i + 1
(4.3)

By the linearity of expectations, the time taken to learn the entire genotype can be
calculated by summing these independent variables.

E(WB) =
B

∑
i=1

B
B− i + 1

(4.4)
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For an agent which already possesses A correct bits, to learn the remaining bits (B− A),
this becomes:

E(WA→B) =
B

∑
i=A

B
B− i + 1

(4.5)

Example: An agent begins an experiment possessing 16 bits out of a total B = 32. To
obtain the remaining bits, the mean time (in steps) is as follows:

E(W16→32) =
32

∑
i=17

32
32− i + 1

(4.6)

=
32
16

+
32
15

+ ... +
32
1

(4.7)

= 108.1833 (4.8)

A single agent starts of an experiment (B = 32) with an average of 16 correct genotypic
bits. We should thus expect each agent, if they are always engaged in individual learning,
to take around 108 steps to attain maximal fitness.

Monte Carlo trials on 16-bit strings show that the expected time to learn the remaining
16 bits drops rapidly as population size N rises:

N = 1→ E(W16→32) = 108.18 (4.9)

N = 2→ E(W16→32) = 87.55 (4.10)

N = 4→ E(W16→32) = 74.2 (4.11)

N = 16→ E(W16→32) = 57.65 (4.12)

N = 64→ E(W16→32) = 48.27 (4.13)

For these trials, we use N = 64. This means that, according to the above analysis, the
phase change does not take place at B = 64 (as inferred from the previous graphs) but at
B = 48.

We shall proceed to examine the different regimes, where B < 48 and B >= 48.

The innate behaviour regime (B < 48)

Consider the expected lifespan of an agent. In a population of N = 64, given the birth-death
scenario, each agent can expect to live for an average of 64 steps.

Based on the above experiments, the expected time for some agent to learn the remaining
16 bits is 48 steps.

This means that in a population of 64 agents, if all are engaged purely in individual
learning, we can expect at least one agent to reach the fitness peak within its lifetime (the
initial “optimal agent”). Any further individual learning trials will be deleterious and
decrease the agent’s fitness by increasing its Hamming distance to the fitness peak.
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Meanwhile, other peers will have attained the same peak fitness also via having engaged
primarily in individual learning. Multiple competitors will share the same maximal fitness
as the optimal agent. However, they may – by chance mutations, and the same probability
structure as described above – have also developed optimal traits in their genotype. Any
offspring inheriting these bits will gain an adaptive advantage by exhibiting a higher
tendency towards innate behaviour. Thus, the slow trend towards genetic assimilation
begins, with the noisiness of individual learning giving way to reliable instinct.

The individual learning regime (B ≥ 48)

As B rises, so too does the time taken to learn the remaining bits:

N = 64, B = 32→ E(W16→32) = 48.27 (4.14)

N = 64, B = 48→ E(W24→48) = 87.64 (4.15)

N = 64, B = 64→ E(W32→64) = 132.4 (4.16)

As we can see, even for a substantial population all of whom are engaging in learning,
it now takes longer than the agent’s lifetime to reach optimal fitness. This means that
the population spends their entire lifetime trying to close the gap between possessing 50%
to 100% of the environmental traits.

Here, the leading individual always has a fitness far below optimal, but still significantly
greater than its peers. The only viable way to reach this fitness is to engage solely in
individual learning, so learners proliferate rapidly. At this point, any tendency towards
innate behaviour will be strongly deleterious as genotypes are purely the product of
genetic drift, meaning that innate behaviour is penalised yet further. The greater the
positive pressure on learners, the greater the negative pressure on individuals obeying
their genetic instincts.

This cycle continues for the duration of the experiment; an agent spends its lifetime
striving towards higher fitness by individual learning, but never reaching the top. This
means that it never develops the breathing space needed to evolve other optimal behavioural
modes. Every individual within the population is trapped in an evolutionary cycle of
suboptimal behaviour. It is as if the entire population is attempting to climb up a slippery
slope; the top can never be reached, but any momentary effort diverted from ascending the
slope will lead to even more deleterious effects.

4.3.3.3 Task complexity ceiling, revisited

To confirm this theoretical analysis, this experiment was repeated with a focus on the band
of B values between 32 and 64, and omitting social learners as in the analysis above. The
results of this experiment are shown in Figure 4.10.

The predicted transition takes place at B = 48. Supporting the predictions above, B
values less than or equal to 48 exhibit a dominance of innate behaviour. For B > 48,
individual learning is the prevalent mode of transmission.

A small degree of noise is still present within the experimental outcomes, due to the
stochastic nature of the simulations.
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Figure 4.10: Changing B: Behavioural distributions between [32, 64].

Parameter values (4.3.3.3)
N B α µ pswitch pnoise trials
64 - 0.01 0.05 0.00 0.25 20

4.3.3.4 High task complexity locks a population in to a cycle of absolute genetic shield-
ing, in which innate behaviour becomes deleterious

Much literature has been devoted to the concept of genetic shielding, in which behavioural
plasticity reduces the strength and speed of genetic evolution by providing a timely
phenotypic response to the environmental challenges that are posed (Wright, 1931; Ackley
and Littman, 1991; Anderson, 1995; Mayley, 1997). If an organism is capable of altering its
behaviour to adapt to a new selection pressure within its lifetime, the need to develop an
innate tendency for the same trait is lessened.

We argue that the “slippery slope” cycle described above is a particularly insidious,
absolute form of genetic shielding, in which the task complexity is so great that total
plasticity arises to maximise fitness throughout the individual’s lifetime. Yet in doing
so, this absolute plasticity penalises innate tendencies. Whereas typical genetic shielding
slows down the rate of genetic evolution, this absolute shielding actually impedes evolution,
ultimately to the detriment of the individual’s fitness.

4.3.4 Variability & Task Complexity

To establish a complete picture of the relative strengths of innate behaviour, individual
learning and social learning in fluctuating environments, an array of experiments was exe-
cuted over a range of rates of change (pswitch ∈ [0.00001, 0.5]) and degrees of environmental
complexity (B ∈ [2, 1024]).

Each permutation of pswitch and B was executed for 5× 105 timesteps, and a snapshot
taken of the final distribution of behavioural traits. These are graphed in Figure 4.11, with
red, green and blue segments corresponding to the proportional presence of bevo, bind and
bsoc respectively.

Parameter values (4.3.4.0)
N B α µ pswitch pnoise trials
64 - 0.01 0.05 - 0.25 10
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Figure 4.11: Learning modes at equilibrium across an array of pswitch and B
values.

There are distinctive regimes in which each mode of learning dominates, with inter-
actions between these two variables. At low rates of change and in simple environments,
the population exhibits a prevalence of bevo: individuals tend towards innate behaviour in
contexts wherein an optimal genotype is simpler to obtain or maintain.

As either fluctuation rate or task complexity increase, strategies become more mixed,
with a trend towards social learning at median values of each. A greater amount of noise
in this regime suggests that selection pressures are weaker, leading to more vulnerability to
stochastic variation. As per the analysis in Section 4.3.3.2, experiments with task complexity
beyond B ≥ 48 are uniformly dominated by individual learning.

4.3.4.1 Three-phase learning regime is bounded by task complexity

In Section 4.3.2.1, we showed that slow-, moderate- and fast-changing environments lead to
dominant regimes of innate behaviour, social learning and individual learning respectively.
From Section 4.3.4, we can see that these results are bounded by the level of complexity of
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the environment.
In very simple environments (B < 8), individual trial-and-error is marginalised in

favour of innate behaviour and social learning, and never becomes the dominant paradigm,
even at a high level of pswitch. In increasingly complex environments, the window of social
learning becomes narrower until individual learning dominates entirely.

Beyond an environment complexity bound of B = 48, following the analysis in Sec-
tion 4.3.3.2, individual learning dominates entirely at all rates of environmental change.

The three-phase regime shown in §4.3.2.1, therefore, bounded by the complexity of
the set of traits that an individual seeks to achieve: in particularly low-complexity and
high-complexity environments, learning modes are constrained to bevo and bind respectively.

4.4 Summary

The research goal in this chapter was to evaluate the different learning methods that
individuals use to maximise their fitness in stable and changing environments, based on
the model defined and described in §3.2.

In stable environments (§4.3.1), we showed that a new population initially adopts
social learning (§4.3.1.1), subsequently undergoing genetic assimilation and reaching an
equilibrium in which innate behaviours dominate. This is a socially-mediated form of
the Baldwin effect. The genetic and phenotypic fitness curves of this population (§4.3.1.2)
demonstrate substantial genetic shielding, in which phenotypic plasticity reduces genetic
selection pressure by adapting to the environment within the individual’s lifetime.

After a major environmental perturbation (§4.3.1.3), we see a series of three sequential
regimes: individual learning immediately increases on prevalence, enabling individuals
within the population to acquire the new successful traits, which then propagate via
social learning. Finally, the traits are genetically assimilated, resulting in an equilibrium
dominated by innate behaviour. This equilibrium behaviour has a price, however, which is
that a homogeneously-adapted population has a diminished adaptive response to future
perturbations.

The introduction of variable task complexity to a static environment demonstrates a
phase change: beyond a certain threshold of task complexity, innate behaviour is superseded
by individual learning (§4.3.3.1). A mathematical analysis shows that this is due to a
“slippery slope” paradox (§4.3.3.2), in which a population becomes trapped at a suboptimal
level of fitness when faced with a task whose subtraits they cannot acquire within their
lifetime. The need to continually engage in learning activities causes innate tendencies to
be completely eliminated, which causes an absolute form of genotypic shielding (§4.3.3.4).

In fluctuating environments (§4.3.2), the behavioural landscape features a much higher
rate of social learning (§4.3.2.1). At slow rates of environmental change, innate behaviour
is advantageous. At moderate and fast rates of change, social and individual learning
respectively dominate. Some overlap is evident between regimes, with tendencies gradually
diminishing in prominence.

Varying the environment’s fluctuation rate and task complexity over a spectrum of
values, we showed a series of analogous regimes for task complexity (§4.3.4), in which
simple environments reward innate behaviour even at moderate rates of change. We infer
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that the three timescale-based learning regimes (individual/social/innate) only takes place
within a certain sweet spot of task complexity (§4.3.4.1), outside of which either social or
innate behaviours are not found. Individual learning remains prevalent in all environments
characterised by a complex task.
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Chapter 5: Structured Populations

5.1 Overview

Chapter 4 explored the interactions between learning modes and environmental properties
within a well-mixed population: that is to say, one in which population structure does not
exist. The population was treated as unstructured, interacting with arbitrary neighbours.
This is not representative of a real-world ecosystem, wherein an individual is embedded in
a bounded spatial context, typically interacting with a regular selection of conspecifics.

In this chapter, we incrementally build upon the results of our numerical model
with a series of experiments that introduce population structure via individual-specific
locality. Agents can no longer interact with any other peers within the population, but are
constrained to interact only with those neighbours nearby to them. Only these adjacent
peers can be treated as exemplars (or subjects) for social learning activities.

This more closely resembles the structure of a real-world environment. In a real
biological system, an organism has a limited range of perception, and can only accurately
observe a phenomenon within a given range. Moreover, attention is a limited resource, and
can only be devoted to a small number of targets at once (Heyes and Galef Jr, 1996).

5.2 Key Questions

In this chapter, we address the third of our major environmental factors: population
structure.

In stable and unstructured populations, we have seen that individual learning becomes
the dominant strategy in populations that are very fast-changing or characterised by
complex tasks (§4.3.4). Innate behaviour proliferates in simple or static contexts. Do these
results hold in a structured population, and those with variable neighbourhood size?

To respond to this question, we will investigate the learning trends that take place
in transient and equilibrium states over a series of different discrete, fixed population
structures, varying topology and neighbourhood size.

We will also visit some additional questions: Does population structure change the
predicted outcome of the Baldwin effect? How does population structure affect the rate
and success of adaptation?
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5.3 Discrete Grid Structures

We place our agents on a one-dimensional lattice, with periodic boundary conditions. The
general model structure remains the same as Model /0, with no changes to genetic evolution,
individual learning, or fitness parameters. Every agent continues to be awarded fitness
based on its Hamming distance from the environment’s bit string E.

Further properties are introduced:

• Social learning can only take place within the von Neumann neighbourhood (range
r = 1) of each agent; that is, only the 2 adjacent agents are used as potential exemplars.
Roulette wheel selection is still used to select an exemplar, with a preference for the
fittest neighbour.

• When an agent reproduces, its offspring replaces one of its neighbours, selected
uniformly randomly.

One agent inhabits each cell. The CA is therefore initialised with a width equal to the
population size N, currently 256.

5.3.1 Commentary

We have now introduced a population structure to our model. How should we interpret
this in biological terms?

It should be noted that our population is structured but not located. There is no sense of
spatial embodiment within this system; though an agent has neighbours, it does not matter
where on the plane the grouping sits, as the environment is invariant across its surface. An
agent’s spatial environment is constituted solely by its peer group. The peer group size is
fixed for analytical simplicity. This should be understood as modelling the mean number
of neighbours within a population.

The population structure also remains static, with no changes to network structure
within or between generations. This implies that an individual’s peer group remains fixed
through its lifetime, and that circulation between new peers plays a negligible role.

A further spatial assumption introduced by this notion of space is that of exact neigh-
bourhood regularity. In a 2-dimensional von Neumann neighbourhood, each organism has
precisely four neighbours, with no long-range social links to join up distant clusters. In
animal groups, social structures take a range of forms, often exhibiting scale-free patterns
(Wey et al., 2008) with a long-tailed power law distribution of node degree (Barabási and
Albert, 1999). Moreover, social networks themselves evolve substantially over time as peer
groups change (Kossinets and Watts, 2006).

However, Flache and Hegselmann (2001) demonstrate that the qualitative behaviours
of a range of theoretical models are robust to different grid formations: switching from
regular to irregular neighbourhood structure did not have significant qualitative effects on
the models’ outcomes. Their models, like ours, concern social transmission and dispersion
of traits, and should thus predict similar properties to hold within the model proposed
here.
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5.3.2 Results

5.3.2.1 Rigid environmental structure causes behavioural lockin, preventing the Bald-
win effect from taking place

We begin by situating our population within a range of different environment topologies –
the well-mixed, numeric setting of Chapter 4, and discrete grids in 1 and 2 dimensions –
and allowing a series of trials to run to equilibrium. The equilibrium states are shown in
Figure 5.1.
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Figure 5.1: Population structure: Learning modes in well-mixed, 1D and 2D
structures

.

Parameter values (5.3.2.1)
N B α µ pswitch pnoise trials
64 32 0.01 0.05 0.0 0.25 50

We immediately see a major change in learning trends. Interestingly, the dividing
line does not lie between unstructured and structured environments. The 1D structure
results in a significant dominance of social learning behaviours, yet the 2D and well-mixed
populations are both dominated by innate behaviour.

This seems counterintuitive. Individuals within the 2D and well-mixed populations
possess larger neighbourhood sizes, meaning they have a greater number of exemplars to
learn from. This would lead to the natural hypothesis of a larger population size improving
the success of a social strategy. What is the cause behind this contradictory result?

Examining the time-series behavioural trends of a 1D-structured population (Figure 5.2),
we can see that the familiar initial rise of social learning (cf Figure 4.3.1.1) never subsides
to give way to innate behaviours; genetic assimilation does not take place within this
1D-structured population.

A closer inspection of the experiments’ dynamics reveals that this is because the
population becomes trapped in a behavioural “lock-in”. A successful individual – in
this case, one who obtains a reasonably fit genotype and a high propensity towards
social learning – proliferates repeatedly, replacing one or other of its neighbours. These
neighbours also possess a high fitness and are likely to replace one of their neighbours.
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Figure 5.2: Population structure: The rigid structure of a 1D environment
prevents the Baldwin effect from arising

.

Chains of reproductive events take place which ripple along the population, substantially
reducing the chance that a suboptimal cluster of individuals will survive for long enough
to develop the optimal genotype needed to supplant their learning peers.

Like the hidden “refuges” described by the empirical studies of Gause (1934) and
Luckinbill (1973) – spatial pockets which allow a predator to remain concealed from prey
and survive over a long period – the amorphous, less rigidly-structured populations in
our well-mixed and 2D environments can foster small collections of individuals which are
given the breathing space to evolve better-adapted genotypes (and the propensity to act
upon them, in the form of bevo).

The linear cascades of birth-death reproduction that take place in our 1D scenario,
conversely, mean that there is effectively no place to hide for a suboptimal individual.
Successful behaviours are reinforced and proliferate cyclically. This is evidenced by the
relatively small behavioural variance shown in Figure 5.2, which is substantially lower than
the variance in the 2D and well-mixed cases. Viewed from another perspective, it is this
behavioural noise that is needed to give rise to the conjunction of genetic fitness and innate
tendency (bevo) that are required for genetic assimilation to occur.

This mechanism also gives rise to the following result.

5.3.2.2 Rigid population structure prolongs the life of successful individuals

Figure 5.3 illustrates the mean age of individuals within each of these population structures;
that is, the number of timesteps that they have survived for. In a numeric population, a
reproducing individual replaces a randomly-selected member of the population, meaning
that every individual has an equal chance of being replaced every timestep. This means
that the mean age will always maintain a value around the population size N (in this case,
64).

In the 2D and 1D structures, the picture is quite different. The rigid structure introduces
a clustering effect as described in the previous section, meaning that a successful individual
may survive and proliferate for a great many generations, unchallenged. In the 2D case,
this occurs for a long time, until the population eventually converges to a unified state of
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Figure 5.3: Population structure: Rigid population structure prolongs the life of
successful individuals

.

innate behaviour.
In the 1D case, conversely, this global optimum is never reached; due to the ossified

success of the social learning individuals, the rigid structure maintains the dominance of
this suboptimal behaviour.

This has similarities with the “slippery slope” paradox described in §4.3.3.2; a learning
regime maintains dominance at a local optimum because the population does not have the
evolutionary breathing space needed to cross the fitness valley to the global optimum.

5.3.2.3 Social learning in a changing environment is less effective with a smaller neigh-
bourhood

The subsequent experiments have all taken place in an unchanging world, in the absence of
environmental changes. We now re-introduce instability to the population via the stochastic
update process described in the previous chapter (pswitch = 0.01).

In a fluctuating environment, the equilibrium states across well-mixed, 1D and 2D
population structures are given in Figure 5.4.

Parameter values (5.3.2.3)
N B α µ pswitch pnoise trials
64 32 0.01 0.05 0.001 0.25 50

All three population structures now exhibit the same ordering of learning modes; social
learning prevails, with a smaller degree of individual learning, and an even lesser degree
of propensity towards innate behaviour.

Statistically significant differences do remain between the learning regimes in each of
these contexts. Most prominently, social learning is less successful within a 1D population
than in 2D or well-mixed environments. This seems surprising, given the previous section’s
conclusion that, in a stable environment, social learning is more successful in a 1D structure.

The reason for this differential is that offered in our original hypothesis; that the
smaller neighbourhood size in a 1D population means that the efficacy of social learning is
lessened. In a well-adapted population within an environment that is regularly fluctuating,
an individual must engage on trial-and-error learning to acquire a newly-required trait.
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Figure 5.4: Population structure: Social learning in a changing environment is
less effective with a smaller neighbourhood

This requires the correct trait to be selected by chance, a statistically infrequent occurrence.
Alternatively, an individual can await one of their neighbours learning this trait and
then use their social learning propensity to imitate. The latter is a less risky proposition.
However, in a 1D environment, an individual only has two exemplars to copy from. A 2D
structure gives twice the number of potential exemplars, meaning less time to wait for a
nearby individual to have acquired the trait.

Put differently, a better-connected population means that there are shorter distances
between any pair of individuals, meaning that social information can propagate much
more quickly through a population that is well-mixed or has a wider neighbourhood.

To explore these issues further, we shall proceed to expand our study of neighbourhood
sizes to populations structured on graphs. This will enable us to investigate populations that
do not need to sit on a spatially-explicit field, allowing us to test arbitrary neighbourhood
structures.

5.4 Regular Graph Structures

Grid-based lattice structures, whether 1D or 2D, are a subset of the class of regular graphs,
with degree of 2 and 4 respectively. In this section, we will explore the wider class of
regular graph structures, a standard approach to investigating the effect of population
structure on collective dynamics (Newman, 2010; Lieberman et al., 2005; Szabó and Fáth,
2007).

5.4.1 Construction

The object is to create a k-regular social graph, in which every individual has precisely k
connections to others. Varying k consequently allows us to manipulate the population’s
neighbourhood structure, with larger k equating to a larger clique size.

To construct k-regular graphs, we use the pairing method described by Bollobás (1985):
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1. Create nk points, distributed equally across n buckets.

2. For each point, create a link between it and another randomly-selected point, until nk
pairs are obtained.

3. Use these buckets to create a graph in which each bucket corresponds to a vertex,
with links between points mapped to edges between vertices.

4. If the resulting graph is simple (that is, contains no self-connected nodes or repeated
edges between nodes), terminate; otherwise, restart the process.

This gives a population in which every individual is connected to precisely k others.
Such regular graph structures will be used throughout the rest of this section’s results.

5.4.2 Results

5.4.2.1 Larger neighbourhood size speeds up evolutionary convergence
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Figure 5.5: Regular graphs: Behavioural modes against k

Parameter values (5.4.2.1)
N B α µ pswitch pnoise trials
64 16 0.01 0.05 0.00 0.25 100

We begin by carrying out a series of experiments on varying neighbourhood sizes,
with a population of N = 64. The experiment runs until the population’s behavioural
traits reaches an equilibrium state. A neighbourhood size of k = 63 is equivalent to the
well-mixed case, in which any individual is in the neighbourhood of any other individual.

Results are shown for the logarithmic series of k values: k = 2, 4, 8, 16, 32, 63 (with 63
being the maximum possible value). The result is also shown for the intermediate case
k = 3, which was discovered to have an interesting behaviour.

The equilibrium behavioural traits at each of these k-values are shown in Figure 5.5.
This is a continuation of the results demonstrated in the previous section. With a k of 2, the
population fails to genetically assimilate the successful traits and remains dominated by
social learning. For k > 2, genetic assimilation occurs, and innate behaviour dominates
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(ANOVA, p < 0.0001). No statistically difference is found for any pairwise set of results
beyond k > 2 (Tukey HSD post-hoc test: 3 vs 63, p > 0.1). Although level of adaptation in
isolation is not a meaningful figure, as fitness only has relevance in a competitive situation,
it is useful to note the disparities in genetic shielding and plasticity that take place as k
rises.
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Figure 5.6: Regular graphs: Assimilation time against k

The assimilation times of these populations, as defined in §4.3.3.1, are shown in Fig-
ure 5.6.

A greater neighbour size results in a shorter assimilation time, with large-k populations
undergoing genetic assimilation faster than those of a smaller neighbourhood size (ANOVA,
p < 0.0001). Neighbourhoods of k = 2 converge significantly slower than larger k values (p
< 0.0001, Tukey HSD post-hoc test); k = 3 converges marginally slower than those of k ≥ 16
(p = 0.05 for k = 16).

Graph behavioural modes with non-adjacent birth

To verify whether the behaviour shown in Figure 5.5 is resilient to different modelling
assumptions, we repeated this experiment whilst relaxing the constraint that children
are created in neighbouring vertices from their parent individual; instead, offspring are
positioned at a random location on the graph.

The results are shown in Figure 5.7. The behaviour shown in the above result no longer
takes place. This suggests that the “breathing space” hypothesis was, in fact, an artefact of
the model in question.

5.4.2.2 Larger neighbourhood sizes results in increased social learning propensity

We finally subject a graph-structured population to a changing environment, across a range
of pswitch values. The resulting learning modes at equilibrium are shown in Figure 5.8.

Parameter values (5.4.2.2)
N B α µ pswitch pnoise trials
64 16 0.01 0.05 - 0.25 100
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Figure 5.7: Regular graphs: Behavioural modes against k, random offspring
placement
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Figure 5.8: Regular graphs: Behavioural modes against pswitch and k

This is a rich and somewhat complex set of results that is not initially straightforward to
digest. In general, individuals with a larger neighbourhood size demonstrate a higher level
of innate behaviour, courtesy of the predisposition towards genetic assimilation described
in the previous section. The mean value of bevo in high-k environments is greater than
those in low-k for the equivalent environmental rate of change.

However, at higher rates of pswitch, individuals within the high-k populations demon-
strate a greater degree of social learning, courtesy of the superiority of social learning with
a larger neighbourhood.

Indeed, a larger neighbourhood size results in better-adapted individual at all envi-
ronment variabilities. Figure 5.9 depicts genotypic and phenotypic distance from the
environmental objective E across each of these pswitch/k contexts. Individuals within
the high-k population show improved genotypic and phenotypic fitness for all values of
pswitch ≥ 0.001 (ANOVA, p < 0.0001). For higher variability rates, no significant difference
is observed (comparing genotypic fitness for k = 2 vs k = 63, Tukey HSD post-hoc test
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indicates p > 0.5).
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Figure 5.9: Regular graphs: Genetic and phenotypic fitness against pswitch and k

Returning to Figure 5.8, an interesting parallel emerges when these results are compared
with the three-stage “double Baldwin effect” of Figure 4.3.

Recall that two transient stages occur after a significant perturbation: firstly, of indi-
vidual learning, needed to acquire the novel environmental traits; and subsequently, of
social learning, as these new culturally-ingrained traits proliferate via social transmission.
It appears to be the case that smaller values of k remain trapped in these transient states.
At low values of pswitch, low-k populations are dominated by social learning, whereas
high-k populations assimilate this knowledge into their genotype and develop the pref-
erential innate behaviour. Similarly, at high pswitch, low-k populations are dominated by
individual learning, whereas high-k populates are able to disseminate information via
social transmission, a cheaper and ultimately more successful approach. In summary, a
larger neighbourhood structure enables a population to escape from suboptimal transients,
giving the breathing space needed to reach a global optimum – be it social learning in
changing environments, or gene-mediated instinct in static contexts.

5.5 Summary

In this chapter, explored a range of different population structures, giving order to a
community by limiting each individual to a bounded neighbourhood of interactants.

We began (§5.3) by focusing on 1D and 2D discrete lattice structures. We saw that the
rigid structure of a 1D population prevents the Baldwin effect from taking place (§5.3.2.1),
by suppressing the ‘refuge’-like pockets of evolutionary breathing space needed to facilitate
genetic assimilation. This results in a much wider distribution of individual survival times
(§5.3.2.2), increasing the disparity between fit and unfit agents.

Introducing environmental fluctuation, we showed that social learning in a changing
environment is less successful in 1D populations due to the smaller neighbourhood of
exemplars available to these individuals (§5.3.2.3).

We then shifted to examine populations on regular graphs (§5.4.1), enabling us to
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explore neighbourhood sizes of an arbitrary k. This produced two key findings: firstly,
that a larger neighbourhood size speeds up evolutionary convergence (§5.4.2.1), allowing
successful traits to propagate more rapidly through the population; and secondly, that
larger k results in a generally better-adapted population (§5.4.2.2), over a range of rates of
environmental change.
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Chapter 6: Spatial Heterogeneity

The previous chapters have demonstrated the impacts of environmental change, task
complexity and population structure on the optimal modes of learning arising within a
population. However, selective pressures have remained uniform across the population,
with every individual attempting to optimise the same fitness function. This means that
a given adaptation – flipping phenotypic bit x from 0 → 1 – will be beneficial either
for everybody, or for nobody. This correspondingly means that successfully copying a
behaviour which is adaptively beneficial for my neighbour will also be adaptively beneficial
for me, a constraint that is likely to impact upon preferential learning behaviours.

This chapter introduces spatial structure to the population, experienced as variation
in fitness demands between individuals, or “individual stochasticity” (McNamara et al.,
2011; Lande, 1988). Siting the population on a two-dimensional grid with patterned
variance defined by a pair of quantifiable metrics, we will investigate the effects that spatial
heterogeneity has on the evolution of a learning population.

6.1 Overview

We briefly summarise two major metrics that will be used to quantify spatial heterogeneity
(§6.3), fragmentation and gradient, and outline a method of constructing a heterogeneous
2D landscape with spatial variance governed by these parameters (§6.3.1). We define
three different levels of spatial heterogeneity: uniform, denoting completely homogeneous
environments; random, denoting those which are have no correlation across pairwise points,
and structured, which follow the two landscape metrics of fragmentation and gradient.

We subsequently describe an approach to modelling movement across the environment
(§6.3.2), adding evolvable traits which determine an individual’s mobility and tendency
towards social clustering.

We then present a series of experimental results from these heterogeneous environments
(§6.4). We begin by investigating learning regimes within uniform, structured, and random
environments (§6.4.1.1), for populations that are alternately sessile (fixed) and mobile. We
repeat these experiments over the same set of environments with a level of fluctuation
over time (§6.4.1.4), and investigate the changes in mean fitness that each types of learning
mode produce.

6.2 Key Questions

This chapter concerns the fourth of this thesis’ overarching environmental factors: spatial
heterogeneity. To investigate the behavioural effects of heterogeneity within our model, we
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first need to be able to construct a spatial environment whose heterogeneity is determined
by a minimal set of ecologically relevant properties.

This is a methodological issue, concerned with extending our current model into the
realm of spatial variance in a way that is simple, quantifiable and extends from the existing
research.

We will first define the set of metrics that we seek to model: properties of spatial
arrangement and relationships between, and within, discontinuous clusters of resources.
We then need to define an approach to creating an environment which exhibits the full
range of values of these metrics. Once we have done so, we can carry out experiments
at different locations in metric space. For example, we might seek to understand how
evolution progresses in an environment with low patchiness and high fragmentation, or to
carry out a series of experiments between low and high fragmentation.

We will define two key metrics to determine an environment’s heterogeneity: gradient
and fragmentation.

Field studies demonstrate correlations between environmental heterogeneity and ten-
dencies towards phenotypic plasticity (Baythavong, 2011). Using this model, we can predict
exactly how particular types of heterogeneity might result in tendencies towards different
kinds of plasticity.

We are particularly interested in whether social learning may be seen to particularly
arise in specific kinds of environment, as this has not previously been given much depth of
study.

We will finally introduce mobility to our population. By moving through an environ-
ment, an organism may be able to reduce its experienced heterogeneity (by moving towards
similar environments when an environment changes to become unfamiliar) or increase its
experienced heterogeneity (by moving into new and unfamiliar terrain). We will introduce
movement abilities to investigate interactions between movement, learning and evolution
in heterogeneous spaces.

6.3 Constructing Heterogeneous Environments

Before we can conduct experiments within heterogeneous environments, we first need
to determine what exactly we mean by heterogeneity. We will define two key properties
to characterise a heterogeneous environment, and describe a method of constructing
environments which possess these properties based on the common single-resource metrics
found within landscape ecology (see Section 2.4 for background).

The metrics we define are fragmentation and gradient.

fragmentation, F – are resources aggregated in few large bodies, or are there multiple,
smaller aggregations of resources?

gradient, G – are resource deposits surrounded by gradients of lesser abundance, so that
organisms can follow a resource gradient to a local maximum? When a single resource
is available, this is determined by adjacent cells having a high pairwise correlation
in their resource abundance, so is equivalent to having a low patchiness. Gradient
is the inverse of patchiness: an environment with a low G value has high patchiness.
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We adopt this nomenclature partly to disambiguate with previous literature which
uses “patchiness” in a looser sense (Marquet et al., 1993; Grünbaum, 2012), and partly
because “gradient” is a more intuitive term in a single-resource environment.

6.3.1 Method

The present model differs from the landscape ecology literature in one key fashion. Unlike
in a real-world ecosystem, which might be made up of segmented areas of qualitatively
different kinds or niches, we will begin by describing landscapes containing one type of
resource, with “heterogeneity” measuring differences of resource plenitude in neighbouring
locations; that is, differences in payoffs to individuals inhabiting each location. Certain
properties described in Riitters’ and Li’s analyses are therefore not applicable, and others
require minor modification to apply in a single-niche world. For example, NTYP, one of
the 6 dominant landscape characteristics in Riitter’s factor analysis (Riitters et al., 1995),
corresponds to the “number of attribute classes” (or resources) designated within that
landscape, and so plays no role here.

Romme first describes patchiness as the “contrast between adjacent communities”
Romme (1982), typically determined by the boundary relationships between different types
of land cover. In our single-factor approach, we recast patchiness as a relationship between
adjacent cells of the same resource type, wherein high patchiness is equivalent to having a
small degree of autocorrelation between adjacent cells.

Objective: A method of stochastically constructing a two-dimensional spatially-varying
landscape, whose heterogeneity properties are determined by the fragmentation and gradient
indices.

Approach: The method we propose is similar to that described by Perlin (2002) in his work
modelling fractal-like landscapes for computer graphics applications. The general approach
is to sum together several N-dimensional interpolated noise functions at different spatial
scales, or “octaves”, where a lower octave has a wider period and a greater amplitude. The
amplitude of each noise function can be thought of as corresponding to a height value.
The amplitude at higher octaves falls off exponentially, according to a rolloff constant. This
means that higher octaves are more detailed spatially but have less ‘height’ impact on the
landscape.

To construct a 1-dimensional landscape with k octaves, we begin with a series of
stochastic noise functions ζi, each of which takes a single position parameter x and returns
a uniformly random number within [−0.5, 0.5]. The period of ζi is the distance in x between
values, with the period halving every octave:

Period(ζ0) = 20

Period(ζ1) = 2−1

Period(ζ2) = 2−2

...
Period(ζi) = 2−i

Between values, linear interpolation is performed, creating the interpolated layers of
the landscape (Figure 6.1).
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The aggregate height value of the landscape at a given point x is found by sum-
ming these noise functions, cumulatively multiplied by the rolloff value (r ∈ [0, 1]) which
determines the ruggedness of the landscape:

ζ(x) =
k

∑
i=0

riζi(x) (6.1)

The resultant output is shown in Figure 6.1 (x ∈ [0, 4], k = 5, r = 0.75). After 5 additive
octaves, the landscape is fairly rugged, with several local optima. Increasing the value of r
would increase this ruggedness proportionately.

Figure 6.1: Constructing a landscape by summing cumulative octaves (where
each octave is summed with those prior to it, thus “Octave 3” shows Octaves 1, 2
and 3 summed.). Each octave has finer detail and lower amplitude than the last.

6.3.1.1 Extending Into 2D

The same approach can be applied in a 2D (or higher-dimensional) landscape simply
by scaling the dimensionality of the noise function. Instead of ζi(x), whose values are
determined by a sequence of random values, we introduce ζi(x, y), whose values take the
form of a grid. Interpolation is performed over two dimensions.

ζ(x, y) =
k

∑
i=0

rkζk(x, y) (6.2)
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An example is shown in Figure 6.2, over x ∈ [0, 4], y ∈ [0, 2]. Lighter cells denote higher
amplitude values.

In an ecological context, these amplitude values could represent the quantity of a given
resource available in a cell, where a greater amplitude means a greater fitness payoff to an
organism inhabiting that cell. Alternatively, they could represent the balance between an
A/B duo of resources, in which lighter cells are more abundant in A. We will explicitly
link these ideas to our model shortly.

Figure 6.2: Landscape construction An example of a 2D landscape (F = 0.5,
G = 0.5).

To introduce our landscape metrics, we extend by Equation 6.2 in two ways: by scaling
the positional (x, y) parameters by F; and by wrapping it in a sigmoid tanh function,
multiplied by G, to accentuate or lessen the gradient between adjacent cells. The resulting
generator function is given in Equation 6.3.

ζ(x, y) = tanh

(
G

k

∑
i=0

rkζk(Fx, Fy)

)
(6.3)

F is used to scale the generated landscapes to provide the desired granularity. A large
F value is effectively the same as zooming out on the landscape, resulting in many smaller
resource clusters.

G is used to adjust the step sharpness of the sigmoid function, serving to increase
or decrease the differential between adjacent values. With a G value much greater than
1, ζ(x, y) tends towards becoming a step function and gradients in the landscape are
eradicated.

A low-F, high-G environment has no discontinuities and large areas of homogeneous
resources, similar to a completely uniform environment. Conversely, in a high-F, low-G
environment, neighbouring cells will exhibit almost no correlation, very close to a uniformly
random distribution. The structured heterogeneity produced by this construction method
is therefore bounded by completely uniform and completely random landscapes. See
Figure 6.3 for example landscapes generated by this algorithm.

6.3.1.2 Measuring Landscape Properties with Moran’s Index

To verify that the Perlin landscapes produced by this method reflect qualities typical of
the landscape ecology literature, we subject them to Moran’s I value, a measure of spatial
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Figure 6.3: Landscape construction: Variable values. F increases from top to
bottom, and G decreases from left to right.

autocorrelation. It varies from -1 to +1, where +1 denotes a perfect correlation between
adjacent, and -1 denotes perfect negative autocorrelation (that is, all pairwise neighbouring
cells have values each equal to the negation of the other). A value of 0 is expected when
cells have uniformly random values.

Based on the definitions of our F and G values, we would expect that a higher F
parameter should result in a lower mean of I, reflecting the lower autocorrelation between
adjacent locations as the granularity of the landscape increases. Conversely, G should have
no overall effect on the mean I value; despite the fact that a lower gradient value introduces
sharp discontinuities at the borderline between patches, this should be counterbalanced by
the increased homogeneity within a resource patch.

Applied to our spatial matrix, Moran’s I is defined as below

I =
N

∑i ∑j wij

∑i ∑j wij(Xi − X̄)(Xj − X̄)

∑i(Xi − X̄)2 (6.4)

We treat each pairwise case as equally weighted, with X̄ = 0, thus this becomes simply:

I =
∑i ∑j XiXj

∑i X2
i

(6.5)
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Figure 6.4 shows the changing Moran’s I indices for a number of landscapes over a
range of F and G indices. This confirms our predicted evaluations, from which we can
conclude that the F and G matrix are having the intended consequences.
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Figure 6.4: Moran’s I for varying fragmentation (detail) and gradient measures

6.3.1.3 Integration with Baseline Model

Integration of this Perlin landscape construction method with Model /0 is straightforward.
On a 2D grid, we generate a landscape and use its intensity value to multiply the payoff of
the fitness function as first described in 3.1 (with H(p, E) denoting the Hamming distance
between a phenotype and the environmental task). The fitness payoff for a given position
{x, y} becomes:

φx,y = ζx,y

(
1− H(p, E)

B

)α−1

(6.6)

This introduces a structured heterogeneity to the fitness landscape which allows us to
construct and interrogate the effects of different types of spatial variance.

6.3.1.4 Landscape Extremas: Uniform and random

The structured landscapes generated by this method have a range of Moran’s I values
which describe their heterogeneity. At either end of the I scale, we have two exceptional
types of landscape which will be used to demonstrate the extreme cases.

Uniform landscape is the wholly homogeneous case used in previous chapters: each
cell has an identical payoff of 1. This has a perfect autocorrelation of I = 1.0, meaning that
every pair of neighbouring cells will be precisely the same.

Random landscape has a uniformly random payoff value per cell. It is neither correlated
nor anticorrelated, with a mean autocorrelation of I = 0.0. There is no correlation between
neighbouring cells.
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6.3.2 Location and Movement

6.3.2.1 Stimulus Enhancement vs Local Enhancement

In a real-world environment, a learning organism typically has mobility, and the ability
to navigate and relocate based on its drives. For most animals, a significant proportion of
the daily time and energy budget is spent foraging for nutrition sources (Verner, 1965),
searching out new spatial locations to improve fitness.

Social learning occurs frequently in foraging and other spatial exploration tasks (Heyes
and Galef Jr, 1996). The socially-mediated learning activities performed by animals in this
context may be divided into two forms in a spatial context.

In stimulus enhancement, an individual observes a demonstrator’s interactions with a
physical object and uses them to form a generalisation about other objects of that type. This
may be used to ascertain whether certain classes of food are edible, modifying subsequent
feeding patterns (Galef, 1976).

In local enhancement, an individual forms an association with a specific spatial location,
learning tasks such as foraging that they associate with this particular space. This creates
a useful distinction between different types of learning, which are exercised when an
individual observes and mimics the spatial location of others.

To explore spatially-located properties of social learning, we will now add mobility to
our population, with tendencies for movement and social cohesion.

We introduce a series of new properties of each agent.

• L – location (x, y), {x, y : N|0 ≤ x < W ∧ 0 ≤ y < W}: a pair of integers which lo-
cates the agent in 2D space

• mrate – movement rate [0, 1]: the probability of movement in each timestep. A mrate

of 1 means that the agent moves every timestep.

• mcoh – movement cohesion [−1, 1], the attraction or repulsion towards other agents.
mcoh = 1 means that the agent moves towards groups of peers as often as possible,
using roulette-wheel selection to weight in favour of moving towards peers; mcoh = −1
means that the weighting is inverted, so the agent moves away from groups of peers.

Movement occurs when an agent moves to an adjacent cell based on its current occu-
pancy. The mcoh gene controls whether the agent should be attracted or repelled by the
presence of neighbouring agents. We thus need an operator which allows this weighted
movement to occur based on a linear value ranging from [−1, 1].

We define the weighted roulette-wheel selection operator, with the requirement that:

• mcoh = 1: Selection operates according to standard roulette-wheel weighting, wherein
an empty cell has a weight of 1, and a cell with population N has weighting 1 + N.
In this way, an empty cell can still be moved towards, but with 50% of the probability
of a cell with occupancy 1.

• mcoh = 0: Selection operates uniformly randomly; any cell is as likely to be moved
towards as any other.

• mcoh = −1: Selection operates according to inverse roulette-wheel weighting; a cell
with occupancy 1 is 50% less likely to be moved towards than one of occupancy 0.
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Mathematically, this function is defined as follows, with weight w:

w >= 0 : p(vi) = 1 + (wvi)

w < 0 : p(vi) = 1/(1 + wvi)
(6.7)

Continuous boundary conditions are adopted; an agent moving beyond the right-hand
side of the environment wraps onto the left. This effectively creates a toroidal structure.

6.4 Results

6.4.1 Uniform, Random and Structured Environments

6.4.1.1 Genetic convergence is slower in spatially complex environments

To understand the general impact of environmental heterogeneity, we repeat experiment
4.3.1.1: evolution to equilibrium in a static environment. This experiment is performed
across three different types of environment: those that are uniform, random and struc-
tured, the latter with F = 0.5 and G = 0.5.
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Figure 6.5: Genetic convergence is slower in more heterogeneous environments.
With movement, genetic convergence is faster in spatially complex environments.

Parameter values (6.4.1.1)
N B α µ pswitch pnoise trials
64 16 0.01 0.05 0.00 0.25 50

The trajectory of the simulation is similar, with genetic assimilation taking place across
the population. However, the rate at which this occurs varies between different environment
types, with innate behaviour taking longer to exceed social learning in more heterogeneous
environments.

Figure 6.5 shows the generation at which this crossover takes place. Genetic assimilation
takes place approximately 35% faster in a uniform environment, taking place after 13× 103

generations, compared to 19× 103 generations in a structured environment, and 20× 103

generations in a random environment.
The source of this disparity is that, in spatially uncorrelated environments, a parent

is more likely to experience a different set of selection pressures than its children. In
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terms of genetic evolution, this is experienced as environmental noise; an individual that is
perfectly adapted in a particular area of the landscape may produce identical offspring,
which develop in an adjacent area with different adaptive requirements. This slows the
process of convergence to peak fitness in spatially-complex surroundings.

The results (Figure 6.5) show an interesting difference when movement is present.
When a population becomes mobile, the effect of landscape heterogeneity on assimilation
times is reversed: convergence to optimal fitness occurs faster within a spatially complex
environment than in one that is spatially uniform.

In a more spatially heterogeneous context, movement allows an individual to rapidly
locate areas to which they are well adapted. This is a quick fix to improve an individual’s
fitness, consequently increasing their reproductive rate and ultimately speeding up the
process of evolutionary convergence.

In a uniform environment, there is no adaptive difference between neighbouring cells.
Movement, therefore, has no impact on evolutionary rate, as we would expect.

6.4.1.2 Social learning is more evident within complex environments and sessile pop-
ulations

We have seen that evolutionary rates are markedly more rapid in environments that are
more spatially homogeneous, and those in which the population is mobile and thus able to
locate regions with more favourable selection pressures.

The distinction between learning trends at equilibrium is less significant (Figure 6.6).
In a mobile population, no significant difference can be see between equilibrium learning
modes. This reflects the fact that mobility enables a population to buffer against the effects
of spatial uncertainty.

In a sessile population, changing spatial location is not possible and a small but
statistically significant (95% CI) behavioural differential can be seen. Individual learning
remains at a low level. Social learning is more evident across all environments, and is
significantly more prevalent in those that have a random resource distribution.

This reflects the utility of specialised, local knowledge within the population. In a
uniform environment – and, to a lesser extent, one that is structured – an individual’s
offspring is likely to experience a similar set of selective pressures. In an environment
with low correlation between neighbouring regions, the small spatial dispersion of an
individual’s offspring means that they will experience a moderately different environment,
reducing their innate fitness. By relying on the shared knowledge of individuals sharing
that environment, however, fitness can be increased via phenotypic plasticity.

This is the spatially-analogous case to the uncertainty induced by temporal fluctuations,
as described in §4.3.2.

6.4.1.3 Genetic shielding is most prevalent in sessile populations inhabiting random
environments

The genetic and phenotypic fitnesses of the populations in these experiments is shown
in Figure 6.7. Both innate and phenotypic fitness are significantly lower within a mobile
population. Although convergence takes place more rapidly within these populations
(Figure 6.5), the equilibrium state is inferior to those of a sessile population. This is because
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Figure 6.6: Social learning is more evident within complex environments and
sessile populations

the concept of movement encoded in this model can often lead to an individual moving
away from a region in which it is adaptively successful.

As described previously, no significant difference is found between genetic and pheno-
typic fitness in a mobile population, reflecting the fact that these populations rely less on
phenotypic plasticity to improve their functional adaptation.
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Figure 6.7: Genetic shielding is most prevalent in sessile populations inhabiting
random environments

Sessile populations demonstrate a higher level of innate and phenotypic fitness, with
the highest mean fitness in uniform environments, which make for a predictable adaptive
context. A notable distinction can be seen in random environments, in which the population
has an inferior level of innate fitness with a higher level of variance. We can infer from
this that the population in these environments are engaged in a greater level of phenotypic
plasticity which has a significant impact on their lifetime fitness.
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6.4.1.4 In an unstable environment, phenotypic plasticity is particularly pronounced
in sessile populations

We have seen that static and spatially complex environments foster a greater degree of
phenotypic plasticity mediated by social learning, an adaptive advantage that can be
equivalently countered (though at some fitness cost) by spatial mobility.

Real-world environments are not just spatially complex but exhibit change over time.
This experiment re-introduces fluctuation to the environment, using the same stochastic
change process described in §4.3.2 (pswitch = 0.01).
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Figure 6.8: Genetic and phenotypic fitness in unstable environments

Parameter values (6.4.1.4)
N B α µ pswitch pnoise trials
64 16 0.01 0.05 0.001 0.25 30

The results (Figure 6.8) show a disparity between mobile and sessile populations. Both
show a significantly lower of mean genetic fitness than in the stable case (Figure 6.7), with
a higher level of variance. However, the phenotypic fitness levels are only marginally lower
in these unstable environments. Behavioural plasticity is applied to raise an individual’s
fitness within its lifetime.

This distinction is particularly evident within the sessile group, which have a greater
genotype-phenotype differential, amplified moderately further within a random environ-
ment.

6.4.1.5 In a heterogeneous composite environment, individual learning is beneficial,
leading genotypic evolution

This experiment introduces a composite environment, characterised by a pair of environ-
mental tasks T = 2. Here, an individual has a pair of genotypes and phenotypes, evolved as
before, which are exposed to both environmental tasks simultaneously. Fitness is obtained
by summing the phenotypic fitness of both phenotypes.

To explore the impacts of different learning modes when multiple environmental tasks
are present, we perform a number of experiments in which particular learning modes are
suppressed: one series in which both bind and bsoc are present; one series in which each
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of the learning modes is available in isolation; and one in which neither learning mode is
available, restricting the population to only develop via genetic evolution. The results of
these experiments are shown in Figure 6.9.

With this landscape configuration, we see some novel dynamics arising in the interaction
between learning and evolution. The first notable property is that individual learning plays
an unusually prominent role, improving phenotypic fitness in both random and uniform
environments.
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Figure 6.9: Spatial heterogeneity: Genetic and phenotypic fitness, restricted
learning modes

Parameter values (6.4.1.5)
N B α µ pswitch pnoise trials
64 16 0.01 0.05 0.00 0.25 100

A particularly interesting and unexpected property arises in uniform environments.
As per previous experiments, genotypic and phenotypic fitnesses are higher in a uniform
context than those which are more spatially heterogeneous, due to the lower level of
uncertainty exemplified within this setting.

When individual learning is introduced in a uniform environment, fitness improves.
The novel characteristic is that genetic fitness also improves when learning is introduced.
This is a behaviour that has not arisen in any previous context; typically, learning will shield
the emergence of innate behaviours, actively reducing genotypic adaptation. However, in
this case, genetic fitness is lowest when neither learning capacity is available. Nor is this
quite like the behaviour of genetic “guiding” described by Mayley (1997) and Maynard
Smith (1987), which improves the rate of genetic evolution but can still have negative
impact on a population’s ultimate fitness. Moreover, we did not see this behaviour emerge
with a single environmental task, meaning that it is a propensity specific to multi-task
environments, and it likewise does not arise in spatially heterogeneous landscapes.

The cause behind the behaviour lies in the fact that two different sources of fitness are
simultaneously available to the population at any point in the spatial environment. An
individual can increase its fitness by improving its task adaptation towards E1 or E2. The
effect is that an individual’s behaviour diverges to specialise in either one of these tasks,

84



6.5. SUMMARY

using individual learning to make the rapid transition towards fitness in E1 or E2 and to
subsequently maintain its fitness within this task.

6.4.2 Landscape Metrics

6.4.2.1 Evolutionary convergence is delayed when gradient is low and fragmentation
is high

The following results explore the impact of changing the landscape metrics which char-
acterise a structured environment: fragmentation F and gradient G. As an environment
is quantified by each of these properties independently, we will vary each parameter
separately to examine its effects on learning and evolution behaviours.

The effects of altering the fragmentation and gradient of a heterogeneous environment
are shown in Figure 6.10, with the Y-axis depicting the time at which genetic assimilation
takes place (as per the definition in the previous section). The effects of heterogeneity
are surprising. Convergence takes considerably longer in environments which are dis-
continuous (low value of G), an effect that is amplified by the degree of patchiness in the
environment (ANOVA, p < 0.05). In clumped environments (low F), a population on a
discontinuous landscape takes 150% of the time to converge than on a smooth landscape.
In fragmented environments, a discontinuous landscape leads to convergence times that
are 2.5x that of smooth landscapes.
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Figure 6.10: Convergence is slowest with high values of F and high values of G

Parameter values (6.4.2.1)
N B α µ pswitch pnoise trials
64 16 0.01 0.05 0.00 0.25 50

6.5 Summary

This chapter has investigated the dynamics of a learning and evolving population in
environments which exhibit a range of different kinds of environmental heterogeneity.
Environment types have featured those which are uniform, displaying no change across
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their spatial extent; those which are random, in which adjacent pairs of cells have no corre-
lation in their resource type or fitness payoff; and those which are structured, with clumps
of resources separated by discontinuities of varying smoothness. We described a novel
method of constructing a discrete two-dimensional landscape which can be characterised
by two metrics drawn from the landscape ecology literature (§6.3.1): fragmentation, which
describes whether the environment contains a large number of small resource patches or a
small number of large patches; and gradient, determining the level of discontinuity between
adjacent cells. We also introduced movement capabilities to our population (§6.3.2), with
an individual’s innate movement tendencies subject to evolution.

We have used this framework to generate a number of novel results.
In spatially complex environments, genetic assimilation takes substantially longer

to complete due to the noise introduced by spatial uncertainty (§6.4.1.1). Introducing
movement, however, causes the opposite result, with evolution operating more quickly over
a mobile population in a complex environment, due to the population’s ability to locate
locations with more favourable selection pressures. Complex environments also foster a
higher level of social learning, particularly within sessile populations (§6.4.1.2), whose fixed
locations give rise to a greater demand for behavioural plasticity (§6.4.1.3). Introducing
instability to a spatially heterogeneous environment, we saw that the tendency towards
phenotypic plasticity in sessile populations became pronounced yet further (§6.4.1.4).

In composite heterogeneous environments, with more that one environmental task
to attend to, individual learning plays a more prominent role, serving to increase both
phenotypic and – unusually – genetic fitness (§6.4.1.5).

In structured environments, characterised by gradient and fragmentation values, we
saw that evolutionary convergence is delayed significantly in gradients that are detailed
and discontinuous; that is, low G and high F (§6.4.2.1).
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Chapter 7: Conclusions

7.1 Overview

This section begins by summarising the key results obtained within this dissertation
(§7.2), reviewing each chapter’s results in context, and summarising the major research
contributions (§7.3). We critically evaluate the limitations of the research and threats to
validity posed towards it, and discuss future work that goes beyond that presented here
(§7.4). We conclude with some closing remarks (§7.5).

7.2 Key Results

This dissertation has demonstrated the impact of different classes of environmental hetero-
geneity on the optimal modes of information acquisition that we should expect to see arise
within a population. We defined four types of environmental factors under investigation:
variability; task complexity; population structure; and spatial heterogeneity.

We described a novel individual-based model, representing a population of polygenic
individuals that are able to engage in innate behaviour, individual learning, and social
learning. We proceeded to introduce incrementally more detailed forms of environmental
structure to understand how each of these four environmental factors affects the equilibrium
behavioural modes that are likely to be produced by natural selection.

Predictions and comparisons with existing results are included within discussion of
each factor below.

Baseline Results

Beginning from well-mixed populations in a static population, we proceeded to examine
the baseline set of interactions generated by the simplest iteration of this model. In a stable
environment, we saw that two distinct phases of behaviour take place. Initially, social
learning dominates, as individuals adopt traits in a relatively unfamiliar environment
by imitating those around them. This creates the breathing space needed to accumulate
these traits innately, which brings about the genetic assimilation of the traits in question,
allowing the population to exercise the less-costly facility of innate behaviour. This entails
a transient period of genotypic “shielding”, in which behavioural plasticity slows down
evolutionary development by enabling individuals to adapt to an environment within their
lifetime.
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Environmental Factor 1: Variability

Environmental variability was introduced in the form of small, stochastic changes to the
shared fitness function. We saw that this gradual type of environmental change leads to a
different equilibrium set of states; social learning prevails at a moderate rate of change, and
individual learning in fast-changing regimes. We diagrammed the complete relationship
between task complexity and rates of change, showing that innate behaviour also dominates
in very simple tasks. Social learning fills the middle ground, in environments which are
moderately fast-changing or moderately complex.

These results corroborate those of Wakano and Aoki (2006), Boyd and Richerson (1985)
et al, who predict the same three-phase regime of learning modes, offering support for this
model. They also offer a new constraint on these dynamics, and a prediction for empirical
studies: that even at moderate rates of change, social learning is only likely to arise as a
dominant strategy when the environment’s demands are of moderate complexity.

In contrast to gradual environmental change is the phenomenon of a rapid environ-
mental shift (Lande, 2009; Hallsson and Björklund, 2012), modelled here as a complete
change to the environment’s fitness function. This was shown to bring about three phases
of behavioural dominance. Firstly, individual learning proliferates, as individuals scramble
to acquire the new traits required in this unfamiliar circumstance (phase I). These traits
then circulate socially (phase II), before being assimilated into the genotype (phase III).
With cultural assimilation followed by genetic assimilation, we described this as a “double
Baldwin effect”.

This temporary rise in plasticity supports Lande (2009)’s quantitative genetics model,
but is extended with the addition of social transmission. Our results make a further
prediction, namely that the social assimilation and subsequent genetic assimilation will
operate on distinct timescales, with overlap between each: social assimilation takes place
rapidly, with a fast decline in individual learning even before social learning has peaked.
The process of genetic assimilation then takes place substantially more slowly.

In our introduction, we discussed results by Feldman et al. (1996) and Kendal et al.
(2009) who show that social learning outcompetes asocial learners when environmental
variance is low. Our results support these predictions, albeit with a continued, persistent
low level of individual learning. This is necessary to support the continued innovation of
traits in the population, in order to more rapidly acquire a trait after a fluctuation takes
place, which can subsequently be disseminated.

Our results partly support the empirical work of Hallsson and Björklund (2012), in that
phenotypic plasticity and genetic variance increase after environmental fluctuations are
introduced and subsequently decreased. This rise in genetic variance is induced by the
lower dependence on innate behaviour, particularly in the parts of the phenotype in which
successful traits have been phenotypically assimilated via social learning. However, they
do not support the observation that, after selection on these plastic individuals, subsequent
plasticity is lower. This is likely due to the limitation of the simplicity of the model
used, omitting the mechanisms that dictate plasticity in different areas of behaviour. An
extension to this work could use a connectionist model to create a more sophisticated
model of adaptive learning (similar to Nolfi et al. (1994)) which may result more nuanced
plastic behaviours.
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Environmental Factor 2: Task Complexity

We explored the consequences of changing the level of complexity of the task that an
individual needs to fulfil to reach optimal fitness in its environment. The low-complexity
case, where B = 1, is equivalent to the single-locus quantitative genetics models used
in prior work (Ancel, 2000). It is interesting to note that, at this minimum level of task
complexity, individual learning never appears as the dominant mode of behaviour; social
learning dominates, even at high rates of environmental fluctuation. This is because,
in well-mixed populations, there is virtually always a small number of individuals who
possess the correct trait (either 1 or 0) and so a stronger exemplar can always be found and
reliably mimicked.

Beyond a certain threshold level of task complexity, a phase transition to a population
of individual learners comes about. A mathematical analysis revealed that this was due to
the task’s learning time exceeding the lifetime of an individual, giving rise to a virtually
paradoxical state we described as a “slippery slope” scenario: the population becomes
wholly reliant on individual learning to try to attain an unattainable goal, thereby causing
any type of instinctual behaviour to have deleterious effects.

This result has interesting implications in an evolutionary context. It suggests that an
extreme pressure on phenotypic plasticity may correspondingly result in an absolute form
of extreme genetic drift, as genetic pressure falls to zero.

In our introduction, we discussed work by Dukas and Visscher (1994) and Marler (1970)
who indicate that complex tasks may require lifetime learning to achieve. Our results are
theoretical support that, for tasks beyond a given complexity, we would indeed expect
to see a strong tendency towards individual learning. Moreover, they predict that innate
disposition should fall away for these tasks.

Environmental Factor 3: Population Structure

This question is tackled in Chapter 5, by introducing two different forms of discrete
structure to a population. Initially, the population is sited on one- and two-dimensional
lattice structures similar to a cellular automata. Latterly, it is modelled as a k-regular graph,
with an individual interacting with a neighbourhood of size k.

We encountered a surprising result. Unlike the well-mixed and 2D-structured popula-
tion, the 1D population never reaches the stage of genetic assimilation, thus not demon-
strating the Baldwin effect. We determined that this was because the rigid population
structure prevents the refuge-like breathing space required for innate behaviour to emerge,
thus locking in the population to a maladaptive behaviour. We suggested that the more
rigid population structure locks a population in to the earlier transients of the three-phase
learning process described in the double Baldwin effect.

However, further experiments showed that relaxing the model’s representation of
reproduction – in which offspring always replace a neighbour of their parent – eradicates
this behaviour. It is unlikely that such a constraint would be imposed within a real-world
model, so the predictions generated may be attributed to a modelling artefact.

Switching to k-regular graphs for finer control over neighbourhood structure, we saw
that, in general, larger neighbourhood size accelerates convergence to equilibrium, and
results in a better-adapted population.
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In our introduction, we discussed work from evolutionary game theory that suggests
that social structure can give rise to altruistic behaviour. Due to the form of our model,
altruism cannot truly arise as a strategy, although we did demonstrate a substantial increase
in the success of social learning as a dominant mode of learning.

Environmental Factor 4: Spatial Heterogeneity

The final chapter of results concerns environments which are spatially explicit and demon-
strate more complex spatial patterning. We began by describing a novel method of
constructing spatially heterogeneous environments that can be characterised by two qual-
ities drawn from the landscape ecology literature. Fragmentation describes whether an
environment is comprised of a large number of small areas of resources, or a small number
of large areas. Gradient describes whether adjacent areas of resources are joined by smooth
gradients or sudden discontinuities. These “structured” environments are supplemented
by two extreme types of spatial environment: uniform environments, which are spatially
homogeneous over their extent; and random environments, in which pairwise regions have
no correlation.

This spectrum of heterogeneity – from random to uniform – was used to respond to the
above question, via a series of experiments in which populations are sited on environments
exhibiting the properties under investigation.

We first saw that evolution occurs more slowly in spatially-complex environments, due
to the inconsistency in selective pressures between the environments of a parent and its
offspring. However, this result was then shown not to hold when mobility is introduced
to a population; instead, convergence occurs faster when a mobile population is within a
complex environment.

Social learning was shown to succeed more widely within spatially complex environ-
ments, particularly when inhabited by sessile (static) populations. We observed that this
spatial discontinuity gives rise to uncertainty analogous to the temporal change described
in previous sections. We saw that genetic shielding is particularly prevalent in sessile
populations in complex environments, in which innate behaviour recedes and is replaced
by phenotypic plasticity; likewise in faster-changing environments. Mobile populations,
conversely, exhibit substantially less phenotypic plasticity, instead able to move to locations
with more favourable selection pressures.

In composite environments, with multiple environmental tasks to address, we showed
that individual learning is beneficial. Surprisingly, individual learning can act to lead the
population to a more successful genotypic state – a case of learning not just accelerating
evolution, but increasing a population’s mean fitness.

We finally turned to our landscape metrics, exploring the ways in which fragmented
and graded environmental qualities impact upon learning and evolution. We saw that
environments with high fragmentation and low gradient give rise to significant delays
in convergence rates, with the low level of spatial autocorrelation adding noise to the
evolutionary process.

Our theoretical results support those of Baythavong (2011), who showed that phenotypic
plasticity is preferred in heterogeneous environments that are fine-grained (equivalent to
our “fragmentation”). Baythavong’s work focused on sessile organisms; our models extend
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this theory to offer the new prediction that this conclusion would not hold as strongly for
mobile organisms, in which we would instead predict a lower level of phenotypic plasticity
and a higher level of genetic specialism, with motion enabling the individual to target the
area of the environment to which they are best adapted.

7.3 Research Contributions

This thesis includes a number of results and approaches that are new to the field.
In Chapter 4, we describe a novel minimal individual-based framework for modelling

the interactions between evolution, individual learning and social learning in environments
of arbitrary task complexity and rates of change. This in turn extends the approaches of
Hinton and Nowlan (1987), Belew (1990), Best (1999) and others, with properties which
allow for the investigation of continuously-changing learning trends, gene-culture co-
evolution, and – as later demonstrated – the introduction of arbitrary environmental
structures.

In Section 4.3, we used this model to make a substantial series of novel predictions. We
demonstrated that social learning gives rise to a particularly potent, cultural form of the
Baldwin effect, as predicted by Papineau (2005). We then proceeded to show that, after a
major environmental perturbation, this mutates into a “double Baldwin effect”, with a brief
burst of individual learning followed by a longer phase of social learning, before genetic
assimilation takes place, a testable prediction in the effects of major environmental change.

In Section 4.3.3.1 and the subsequent mathematical analysis (§4.3.3.2, we discover a
vicious evolutionary circle that arises within environments characterised by a task beyond
a certain, learnable level of complexity; a population can become collectively trapped in a
suboptimal state, in which individual learning becomes dominant and innate behaviour
becomes deleterious. To our knowledge, this situation of “absolute genetic shielding” –
and the phase transition that it gives rise to – has not been encountered or discussed in the
existing literature, though it is likely to emerge in other situations.

A further new result in this chapter (§4.3.4) is the demonstration of the interactions
between task complexity and rates of change visualised in Figure 4.11. This suite of
experiments corroborates the consensus view that evolution, individual and social learning
succeed respectively in slow-, moderate- and fast-changing environments; it then expands
these results by demonstrating that task complexity is a further vital characterising factor
in the interaction of these dynamics. Innate behaviour should not only be expected in
slow or static environments, but also those in which a task requires an exceptionally small
number of subtraits; social learning should be expected in environments of a moderate
rate of change or those of moderate complexity.

In Section 6.3, we take two of the dominant metrics from landscape ecology and describe
a novel method of constructing artificial 2D landscapes that can be parametrised by this
model, an approach that could be used in the context of other simulations predicting the
impact of quantifiable landscape properties on behavioural traits.

A number of new predictions are also offered. One key conclusion is that, in spatially
complex environments, phenotypic plasticity is likely to be particularly pronounced in
sessile populations (reflecting the results of Baythavong (2011)), yet reduced in mobile
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populations. Plasticity thus acts as a replacement for mobility, in which a mobile population
can alter its selection pressures by relocating to a more favourable location.

7.4 Limitations and Future Work

The models described in this thesis are, by design, unrealistic. They are designed to be
maximally parsimonious in their means and, by extension, applicable to a wide range of
scenarios. As a consequence, in limiting the scope of the research, it has many omissions
imposed by design. This section addresses these limitations and omissions, and identifies
further work that could be performed.

Prior to this, a couple of specific discrepancies and shortfalls should be remarked upon.
The results shown in Section 5.4.2.1 (and by extension, Section 5.3.2.2) seems to demon-

strate that small neighbourhood size results in a behavioural lock-in, in which the popula-
tion remains trapped in a suboptimal behavioural mode. However, as described later in
the section, this behaviour disappears when one of the model constraints is relaxed: the
placement of offspring in neighbouring vertices. Treated empirically, this constraint would
be as if an individual had a highly constrained number of offspring, which were competing
for the same small set of resources. It is not clear that this is a plausible situation, and so
the result should be treated as an artefact of the model selection.

A result we have failed to reproduce is that of Rainey and Travisano (1998), who
demonstrated that a bacterial population within a heterogeneous environment would
adaptively diverge to form multiple spatial compartments, genetically demarcated by the
survival demands of their respective habitats. Even in heterogeneous environments, the
population converged to a single lineage. This is almost certainly an effect of the model’s
fixed population size and birth/death reproduction structure, which could result in a pocket
of survival being stochastically eradicated by a spatially distant competitor. Extending the
model to allow for a variable population size with a limited resource structure would be an
interesting development, creating the potential for multiple distinct evolutionary lineages
corresponding to environmental heterogeneity.

Varying fluctuation and population collapse (Borg and Channon, 2012)

This model and part of the results included in Chapter 3 were published in Jones and
Blackwell (2011), encompassing many of the results obtained in a well-mixed population.
Some small differences are evidenced, most notably the inclusion of metabolic state in an
individual agent’s state, used to determine its reproductive rate. This was subsequently
removed as the model was refined and simplified.

An extension of Jones and Blackwell (2011) was published by Borg and Channon
(2012), who develop our basic model to draw new conclusions in environments which are
increasingly variable. By introducing periodic levels of variability to the environment, they
demonstrate that major evolutionary adaptations are particularly likely occur at times of
higher variability. Further conclusions are made about the likelihood of population collapse.
Although small departures are made from our model, including the incorporation of a
population-wide learning rate, the fundaments of the model remain the same, including the
bit-wise genotype/phenotype structure and the processes determining their development.
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We believe that this simple but powerful and intuitive framework will continue to bear
fruit in other such novel contexts.

Trait learnability

An implicit assumption of the model is that every genetically-encoded trait possessed by
an individual can be modified by learning, meaning that the optimal phenotype can always
be obtained by sampling distant parts of the fitness landscape. Such a powerful form of
learning is less affected by the structure of the fitness landscape Sznajder et al. (2012),
enabling the individual to cross fitness valleys and escape local maxima.

To address this limitation, an extension could follow the approach taken by Anderson
(1995) or Ancel (2000) in bounding the level of learning that can take place. Exploring
the interaction between bounded learning on more sophisticated fitness landscapes could
reduce the predicted benefits of learning, as well as making further predictions relating
to gene epistasis, which is disregarded by our assumption of a monotonically-increasing
fitness function.

Moreover, the level of plasticity itself should ideally become an evolvable trait, perhaps
as segregated into different areas of behaviour. It may be that the demands posed by
foraging are likely to vary over time, or over different areas, requiring a greater level
of plasticity than mating behaviours. In real-world genotypes, different faculties show
different degrees of innateness vs learnability, even between species (Marler, 1970; Lorenz,
1971; Thorpe, 1956). An interesting development of this work would be to segregate the
genotype and phenotype into different behavioural areas, with evolvable innate/learning
traits for each. This would be a suitable platform to investigate the ways in which particular
behavioural groups tend towards the innate or learned.

Trait evolvability

Similarly, this model makes the assumption that all traits can be evolved innately, regardless
of their complexity. Sophisticated behaviours such as avian tool-use have been shown to
have substantial innate foundations (Tebbich et al., 2001; Kenward et al., 2006) but appear
to be relative naive in execution without practise and social exposure, suggesting that
instinct only provides part of the picture.

Deferring the fine-tuning of such behaviours to learning may be an adaptive choice due
to unpredictability survival challenges, granting a degree of generalism to allow instinct to
be modified to novel scenarios; or it may be a bound on the precision of coordination that
can be encoded innately. It would be an interesting complement to this work to explore
the bounds of innateness, although these bounds are most likely connected with metabolic
and biophysical costs, which would require a more mechanistic approach to modelling.

Explicit costs of learning

No constitutive cost of learning is applied within these models. Recent empirical work
has demonstrated that explicit costs are imposed for the apparatus involved in learning
Mery and Kawecki (2003), paid regardless of whether the ability is used. This would
alter the preferential balance between innate and acquired behaviours. A fixed cost could
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be introduced for learning, imposed as a reduction in fitness proportional to the level of
phenotypic plasticity. Again, this would most likely be more illuminating in the context of
a mechanistic model which reproduces the biophysical substrates of behaviour.

Fixed population size

Many recent models have looked at the effect of environmental fluctuation (Lundberg et al.,
2000; Boyce et al., 2006) and spatial variation (Schreiber, 2010) on changes to population
size, considering the interactions between internal processes (such as competition and
sociality) and external processes of environmental variability. A simple extension of the
model would be to relax the fixed population constraint, enabling the population size and
structure to vary in response to environmental factors.

Borg and Channon (2012) have done some initial work in this area by developing an
earlier version of the baseline model described in this thesis (Jones and Blackwell, 2011) with
variable population structure to explore the effects of changing environmental variability,
showing that increasingly variable environments select for social learning capacities, and
demonstrating the risk of population collapse introduced by population conformity.

Simplistic fitness landscape

The fitness landscapes adopted throughout these models are unimodal. This implies that
fitness increases monotonically as successful traits are acquired; there are no local maxima,
and no modelling of complex inter-trait relationships. Actual genetic interactions are far
much complex and interdependent, with combinations of alleles resulting in nonlinear
and contradictory patterns of effects: epistasis, in which two or more genes contribute in
different ways to one phenotype, with effects that are not simply additive; and pleiotropy,
in which one gene has an impact on multiple phenotypes. Work by Borenstein et al. (2006)
shows that rugged fitness landscapes can alter the dynamics of learning and evolution.

7.5 Concluding Remarks

We began this thesis by drawing up an operational definition of heterogeneity as the
uncertainty experienced by an individual, both in time and space. By systematically
exploring the learning dynamics in populations in both of these dimensions, we have
demonstrated that each of our four aspects of environmental heterogeneity – variability,
task complexity, population structure, and environmental heterogeneity – have substantial
and measurable impacts on the optimal modes of information acquisition that we would
expect to see arise from natural selection.

We have also demonstrated that behavioural plasticity is not simply a deficiency of
evolution, or an omission to be corrected during an organism’s lifetime. Plasticity – and
the uncertainty that it engenders and embodies – is itself an active part of the evolutionary
process, capable of optimising and leading evolution through unforeseeable terrains.
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Appendix A: Further Model Results

The body of this thesis omits certain results which are not central to its argument, particu-
larly those pertaining specifically to properties of the models in question (rather than the
systems whose behaviours are under investigation). These include parameter sweeps and
sensitivity analyses, and certain negative or uninteresting results.

This appendix summarises these peripheral results, referring back to the main text
when particular iterations of the model are used.

It is the author’s belief that, even in an abstract artificial life model, parameter values
should not simply be plucked from thin air, but justified either by biological plausibility
or by demonstrating that values within a particular range are necessary to exhibit certain
effects. Moreover, it is vital to establish confidence in a model by showing that it is not
particularly brittle to a magical set of parameter values. Equally, it should be shown that a
parameter does have some impact within a model, and is not simply there for decoration
or other voodoo purposes.
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A.1 Model Parameter Sweep

A.1.1 Larger population size slows convergence time

Population size can have a substantial effect on the evolutionary dynamics of an ecosystem
(Reed, 2005; Jain et al., 2011; Rozen et al., 2008). It can affect the likelihood that a genetic
trajectory is “locked in” to a particular vector, and the chance of a beneficial mutation
sweeping to dominance.

We can trivially explore different population sizes by altering our model’s N value.
Behavioural trends follow the same pattern as those in §4.3.1.1. Convergence rates, however,
are much slower for large N (Figure A.1); on a log/log scale, assimilation time varies
linearly with N.

Parameter values (A.1.1.0)
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Figure A.1: Convergence times for varying N. Axes on logarithmic scale.

A.1.2 Larger α weakens evolutionary pressure

The α scaling value affects the environment’s fitness curve. A smaller α creates a steeper
falloff for agents with a greater Hamming distance from the environment’s objective; a
larger α means that the fitness differential decreases, lowering the selective pressure for
agents to attain a precise match to the environment’s demands.

Figure A.2 shows the effect of varying α values for a fixed population size in a static
environment. For α of 0.05 or higher, the model follows a noisy trajectory and with less
clear-cut equilibrium state. This is due to the fact that, when reproduction occurs, the
roulette-wheel selection has a greater chance of selecting an agent with a poorer fit to the
environment. Weaker agents are less heavily penalised, and genetic drift can occur.

Figure A.3 shows two different α values over a range of population complexities and
rates of change. The boundaries between different equilibrium regimes are less clear-cut,
with a series of noisy outcomes around B = 32. The overall results do not substantially
differ, but a lower α value of 0.01 was selected to maximise the clarity between results.

97



A.1. MODEL PARAMETER SWEEP

topology= numeric
popsize= 64
bits= 32
steps= 100000
mu= 0.05
alpha= 0.01
p_mut= 0.01
p_mut= 0.01
p_switch= 0.00
p_noise= 0.25

0.00

0.25

0.50

0.75

1.00

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

timestep

fr
eq

u
en

cy

alpha=0.005

topology= numeric
popsize= 64
bits= 32
steps= 100000
mu= 0.05
alpha= 0.01
p_mut= 0.01
p_mut= 0.01
p_switch= 0.00
p_noise= 0.25

0.00

0.25

0.50

0.75

1.00

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

timestep

fr
eq

u
en

cy

alpha=0.01

topology= numeric
popsize= 64
bits= 32
steps= 100000
mu= 0.05
alpha= 0.01
p_mut= 0.01
p_mut= 0.01
p_switch= 0.00
p_noise= 0.25

0.00

0.25

0.50

0.75

1.00

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

timestep

fr
eq

u
en

cy

alpha=0.05

topology= numeric
popsize= 64
bits= 32
steps= 100000
mu= 0.05
alpha= 0.01
p_mut= 0.01
p_mut= 0.01
p_switch= 0.00
p_noise= 0.25

0.00

0.25

0.50

0.75

1.00

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

timestep

fr
eq

u
en

cy

alpha=0.1

Figure A.2: Effects of varying values of α. A larger α decreases the fitness
differential and introduces noise to the system’s stable states.
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Figure A.3: Two values of α
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A.1.3 Larger pnoise decreases the efficacy of social learning
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Figure A.4: Varying pnoise. At very pnoise values, social learning operates
accurately, with individuals able to copy from their fitter peers with high fidelity.
Within this regime, psoce entirely supersedes innate behaviour. At pnoise = 0.5, a
social learner is effectively mimicking values with a white noise distribution, and
so are equally likely to attempt a deleterious action as one that is successful.
Values of pnoise beyond 0.5 indicate that the individual copies from their peers, but
is more likely to perform the inverse action (probability of flipping the operative
bit is greater than 0.5). This could be viewed as functionality analogous to non-
conformity or anti-conformity (Efferson et al., 2008), but has no direct correlate
within our model as we are treating this as a noise term, not a behavioural
tendency.
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A.1. MODEL PARAMETER SWEEP

A.1.4 Larger µ increases the rate of genetic assimilation, adding genetic
noise

µ is the rate at which behavioural trends mutate between generations. A greater µ value
means that an agent’s offspring may have a significantly larger tendency to engage in
different kinds of learning.

For the Baldwin effect to occur, two steps must take place: firstly, a beneficial trait
must arise in an individual through genetic mutation; and subsequently, its offspring must
evolve a greater tendency to behave innately.

Thus, µ affects the rate at which genetic assimilation reaches fixation in the population.
Figure A.5 shows the effects of different µ values. A very small value (µ = 0.005) takes
a very long time to reach fixation; even after 106 generations, equilibrium is not reached.
Moreover, there is great variance between the point and rate at which fixation occurs, as
indicated by the large standard error bars.

As the value is increased (µ = 0.01, µ = 0.05), fixation time decreases, as does the
quantity of noise. However, after a certain threshold (µ = 0.1), the inter-generational
variance is so large that the equilibrium behaviours start to converge together.
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Figure A.5: Effects of varying values of µ. A larger µ increases the rate at which
genetic assimilation sweeps to dominance within a population.
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A.2. LEARNING STRATEGIES

A.1.5 Larger pmut increases rate of genetic assimilation, but can encour-
age social learning

pmut determines the rate at which individual genes mutate between generations. A small
value of pmut decreases the rate at which genetic assimilation takes place, as it takes more
generations for the beneficial trait mutation to occur (Figure A.6).
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Figure A.6: Effects of varying values of pmut. At larger values, acting innately
becomes deleterious.

After pmut passes beyond a certain threshold (pmut = 0.05, Figure A.6), it becomes
detrimental to act innately as there is such a high chance of possessing a deleterious gene
through inter-generational mutations, thus social learning dominates.

A.2 Learning Strategies

We examine a number of discrete strategies, in which entire behavioural qualities are
switched on and off.
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A.2. LEARNING STRATEGIES

A.2.1 Copy Fittest Neighbour vs Copy Random Neighbour:
Fitness-weighted exemplar selection has little effect on dynamics

Laland (2004) discusses a number of learning strategies apparently adopted by real species,
placing emphasis on a handful, notably copy the majority (that is, normative behaviour) and
copy if better (that is, comparative learning). In the case of this model, we are interested in
determining to what extent these particular strategies affect the success of social learning.

At present, agents use a copy fittest strategy; observing their fittest neighbour, weighted
by roulette wheel selection. What happens if we disable this constraint and copy an
arbitrary neighbour?

In the standard model: When engaged in social learning, an exemplar to copy from is
selected using roulette-wheel selection, weighted towards fitter neighbours.

In Copy Random Neighbour, an exemplar is selected uniformly randomly. We would
expect this to significantly weaken the power of social learning as it would increase the
probability of copying an incorrect trait. However, the impact is insignificant (Figure A.7)
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(b) Copy Random Neighbour

Figure A.7: Copying a random neighbour, rather than weighting towards fitter
peers, has an insignificant effect on model dynamics

A.2.2 Copy Random Trait vs Copy Novel Trait:
Copying only novel traits significantly increases the advantage of
social learning

In the standard model, social learning entails an agent observing a neighbour and mimick-
ing a single trait selected uniformly randomly (that is to say, a single bit of their phenotypic
bitstring).

It may be argued that real creatures are only likely to mimic behaviours that differ from
their existing behaviours. We call this strategy Copy Novel Trait.

The results of adopting this strategy are shown in Figure A.8. It substantially increases
the adoption of social learning, as it means that less learning trials are needed to discover
successful new traits.
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Figure A.8: Adopting a strategy of only copying novel traits, rather than
selecting a trait at random, causes social learning to dominate through a wider
parameter space.

A.2.3 Assimilate If Advantageous vs Always Assimilate:
Always Assimilate weakens individual and social learning

In the standard model: When engaging in a learning activity, either individual or social, an
agent attempts to toggle a single bit of its phenotype and evaluates whether the fitness
payoff would be higher than using its current base phenotype. If so, it incorporates the
new bitstring to become its phenotype for subsequent timesteps.

With the strategy Always Assimilate, an agent toggles a bit permanently; that is, it always
incorporates the newly-learned bit.

This mode of operation is severely detrimental to learning activities (Figure A.9). Indi-
vidual learning is never engaged, as attempting to toggle an erroneous bit will be retained
for the individual’s entire lifetime. Social learning is now only seen in environments that are
very fast-changing and simple, as the risk of incorporating an incorrect trait are outweighed
by the fitness costs of remaining genetically outdated in a fast-paced environment.

A.2.4 Modelling learning modes with fixed, thoroughbred behaviours
obstructs the Baldwin effect

Models of evolutionary games (Axelrod and Hamilton, 1981; Nowak, 2006; Rendell et al.,
2010) typically give agents one discrete choice of action, which remains fixed throughout
their lifetime: they exhibit strategy A or strategy B. The results given above are produced
by a population whose learning modes are continuous, with a spectrum of behavioural ten-
dencies that an agent can select from, proportionately to the tendency value (bevo, bind, bsoc)
at each timestep.

Here, we modify the model by allocating each agent a fixed and singular behavioural
mode at the start of the trial, which remains fixed throughout its lifetime. This disallows
the notion of mixed strategies; an agent can be either following its genotype or engaging in
individual learning, but not both.
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Figure A.9: Adopting a strategy of always assimilating learned traits, rather
than critically assimilating based on the trait’s success, dramatically alters the
behavioural landscape.

The results are shown in Figure A.10 (left), across the same lattice of parameter values
as in Section 4.3.4; task complexity B is varied over the x-axis, and environmental rate of
change pswitch over the y-axis.

Compared to the standard results (right), we see an distinct dominance of social learning
over regimes wherein genetic assimilation would normally take place, displacing social
learners with their less costly genetic counterparts. This is due to the fact that this new
model obstructs the very behaviour that allows the Baldwin effect to take place; here,
the initial fitness benefits of plasticity cause social learners to sweep to dominance, and
eradicate any innate tendencies from the population. The Baldwin effect relies on the
possibility of genotypic assimilation supplanting a population of learning agents. Yet, if
innate behavioural capacity is eliminated from the population entirely, genetic assimilation
can no longer take place.
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Figure A.10: Left: Learning modes in a thoroughbred population across values
of pswitch and B. (Learning modes using normal behavioural traits are shown
on the right for comparison.) Social learning appears to be a much more suc-
cessful strategy in this context (cf. Figure 4.11), but is in fact costlier than innate
behaviour; the population becomes locked in to a suboptimal solution.
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Appendix B: Simulation Parameters

This appendix details the model parameters used in each of the experiments detailed
within this dissertation. Parameter values marked with a hyphen (“-”) are not applicable
because they are varied within the experiment.

Experiment N B α µ pswitch pnoise trials

4.3.1.1 numeric-static 64 32 0.01 0.05 0.00 0.25 100

4.3.1.2 numeric-static 64 32 0.01 0.05 0.00 0.25 100

4.3.1.3 numeric-perturbation 64 32 0.01 0.05 0.00 0.25 100

4.3.2 numeric-fluctuating 64 32 0.01 0.05 0.01 0.25 100

4.3.3.1 numeric-static-B-sweep 64 - 0.01 0.05 0.00 0.25 50

4.3.3.3 numeric-static-B-sweep-focused-no-soc 64 - 0.01 0.05 0.00 0.25 20

4.3.4 numeric-lattice 64 - 0.01 0.05 - 0.25 10

5.3.2.1 topology-sweep-static 64 32 0.01 0.05 0.0 0.25 50

5.3.2.3 topology-sweep-fluctuating 64 32 0.01 0.05 0.001 0.25 50

5.4.2.1 graph-k-sweep-initial-fixed 64 16 0.01 0.05 0.00 0.25 100

5.4.2.2 graph-pswitch-sweep 64 16 0.01 0.05 - 0.25 100

6.4.1.1 spatial-structure-distribution-sweep-movement 64 16 0.01 0.05 0.00 0.25 50

6.4.1.4 spatial-structure-distribution-sweep-fluctuating 64 16 0.01 0.05 0.001 0.25 30

6.4.1.5 spatial-structure-distribution-sweep-T=2-restricted 64 16 0.01 0.05 0.00 0.25 100

6.4.2.1 spatial-structure-metric-sweep 64 16 0.01 0.05 0.00 0.25 50

All error bars on results are shown at a 95% confidence interval (p < 0.05).

106



Appendix C: Implementation

The implementation of the simulations used to realise this research was performed as a
two stage process.

Prototypes were first developed in the Python1 programming language, with a novel
agent-based evolutionary modelling framework using elements from NumPy and SciPy.

An optimised version was subsequently developed using C++, with the GNU Science
Library2 for pseudo-random number generation and other probability functions. This
provided over two orders of magnitude performance increase from the prototype. This was
used to carry out distributed experiments in conjunction with a novel Python framework
for distributed processing, using the Xgrid cluster framework and GNU Parallel3(Tange,
2011).

Analysis was performed using the R4 environment, with most graphs produced using
grammars from ggplot2.

The source code for all of these simulations can be obtained from the author’s source
code repository:

https://github.com/ideoforms/phd

1http://www.python.org
2http://www.gnu.org/software/gsl/
3http://www.gnu.org/software/parallel/
4http://www.r-project.org
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