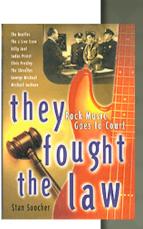
COURT DECISIONS ON MUSIC PLAGIARISM AND THE PREDICTIVE VALUE OF SIMILARITY ALGORITHMS

> Dr. Marc Pendzich Institute of Musicology University of Hamburg

Dr. Daniel Müllensiefen Goldsmiths College University of London

- **1** Introduction
- 2 Method
- **3 Empirical Study**
- 4 Summary/next steps



1 INTRODUCTION

 Melodic Plagiarism: Huge public interest, importance for pop industry - little research

• Exceptions:

- Stan Soocher: They Fought The Law, 1999
- Charles Cronin: Concepts of Melodic Similarity in Music-Copyright, 1998

1 INTRODUCTION

${\scriptstyle \odot}$ The aim of the study is

- to explore how melodic similarity as measured by modern algorithms is related to court decisions in individual cases
- to measure the similarity of the melody pairs in a sample of cases taken from a collection of court cases and
- to evaluate the predictive power of the algorithmic measurements when compared to the court ruling.

2 METHOD

- 20 cases spanning the years from 1970 to 2005 - with a focus on *melodic* aspects of music copyright infringement.
- Creation of monophonic MIDI files,
- analysis of the written opinions of the judges,
- reduction of the court decisions to only two categories
 - "pro plaintiff" = melodic plagiarism
 - "contra plaintiff" = no infringement

BRIGHT TUNES VS. HARRISONGS (1976)

The Chiffons "He's So Fine", 1963
No. 1 in US, UK highest position 11

- George Harrisson, "My Sweet Lord" Single published in 1971
 - No.-1-Hit in US, UK & (West-)Germany

SELLE VS. GIBB (1984)

Ronald Selle, "Let It End"

• Bee Gees, "How Deep Is Your Love" (1977)

3 EMPIRICAL STUDY

- How do court decision relate to melodic similarity?
- What is the frame of reference (directionality of comparisons)?
- How is prior musical knowledge taken into account?

STATISTICALLY INFORMED ALGORITHMS

- Idea: Frequency of melodic elements important for similarity assessment
- Inspired from computational linguistics (Baayen, 2001), text retrieval (Manning & Schütze, 1999)
- Conceptual Components:
 - *m-types* (aka n-grams) as melodic elements
 - Frequency counts: Type frequency (TF) and Inverted Document Frequency (IDF)

MELODIC ELEMENTS: M-TYPES

Word Type <i>t</i>	Frequency <i>f</i> (<i>t</i>),	Melodic Type τ (pitch interval, length 2)	Frequency $f(\tau)$,
Twinkle	2	0, +7	1
little	1	+7, 0	1
star	1	0, +2	1
How	1	+2,0	1
I	1	0, -2	3
wonder	1	-2, -2	1
what	1	-2, 0	2
you	1	0, -1	1
are	1	-1, 0	1

C Corpus of melodies

- m melody
- $\tau \quad \text{Melodic type} \quad$
- τ ~ T ~ # different melodic types

 $|\,m{:}\tau \in m\,| \ \ \text{\# melodies containing }\tau$

Melodic Type τ (pitch interval, length 2)	Frequency $f(\tau)$
0, +7	1
+7, 0	1
0, +2	1
+2, 0	1
0, -2	3
-2, -2	1
-2, 0	2
0, -1	1
-1, 0	1

$$TF(m,\tau) = \frac{f_m(\tau)}{\sum_{i=1}^{\mathrm{T}} f_m(\tau_i)} \qquad IDF_C(\tau) = \log\left(\frac{|C|}{|m:\tau \in m|}\right)$$

C Corpus of melodies

- m melody
- $\tau \quad \text{Melodic type} \quad$
- $\tau ~~$ T ~ # different melodic types

 $|m{:}\tau \in m| \hspace{0.2cm} \# \hspace{0.2cm} \text{melodies containing } \tau$

Melodic Type τ (pitch interval, length 2)	Frequency $f(\tau)$	TF(m, τ)
0, +7	1	0.11
+7, 0	1	0.11
0, +2	1	0.11
+2, 0	1	0.11
0, -2	3	0.33
-2, -2	1	0.11
-2, 0	2	0.22
0, -1	1	0.11
-1, 0	1	0.11

$$TF(m,\tau) = \frac{f_m(\tau)}{\sum_{i=1}^{T} f_m(\tau_i)} \qquad IDF_C(\tau) = \log\left(\frac{|C|}{|m:\tau \in m|}\right)$$

C Corpus of melodies

- m melody
- Melodic type τ
- $TF(m,\tau) = \frac{f_m(\tau)}{\sum_{i=1}^{T} f_m(\tau_i)} \qquad IDF_C(\tau) = \log\left(\frac{|C|}{|m:\tau \in m|}\right)$ T # different melodic types τ

 $|m:\tau \in m| \#$ melodies containing τ

Melodic Type τ (pitch interval, length 2)	Frequency $f(\tau)$	TF(m, τ)	IDF _C (τ)
0, +7	1	0.11	1.57
+7, 0	1	0.11	1.36
0, +2	1	0.11	0.23
+2, 0	1	0.11	0.28
0, -2	3	0.33	0.16
-2, -2	1	0.11	0.19
-2, 0	2	0.22	0.22
0, -1	1	0.11	0.51
-1, 0	1	0.11	0.74

C Corpus of melodies

- m melody
- Melodic type τ
- $TF(m,\tau) = \frac{f_m(\tau)}{\sum_{i=1}^{T} f_m(\tau_i)} \qquad IDF_C(\tau) = \log\left(\frac{|C|}{|m:\tau \in m|}\right)$ T # different melodic types τ

 $|m:\tau \in m| \#$ melodies containing τ

Melodic Type τ (pitch interval, length 2)	Frequency $f(\tau)$	TF(m, τ)	IDF _C (τ)	TFIDF _{m,C} (τ)
0, +7	1	0.11	1.57	0.1727
+7, 0	1	0.11	1.36	0.1496
0, +2	1	0.11	0.23	0.0253
+2, 0	1	0.11	0.28	0.0308
0, -2	3	0.33	0.16	0.0528
-2, -2	1	0.11	0.19	0.0209
-2, 0	2	0.22	0.22	0.0484
0, -1	1	0.11	0.51	0.0561
-1, 0	1	0.11	0.74	0.0814

TF-IDF CORRELATION

$$\sigma_{C}(s,t) = \frac{\sum_{\tau \in s_{n \cup t_{n}}} TFIDF_{s,C}(\tau) \cdot TFIDF_{t,C}(\tau)}{\sqrt{\sum_{\tau \in s_{n \cup t_{n}}} \left(TFIDF_{s,C}(\tau)\right)^{2} \cdot \sum_{\tau \in s_{n \cup t_{n}}} \left(TFIDF_{t,C}(\tau)\right)^{2}}}$$

FEATURE-BASED SIMILARITY

Ratio Model (Tversky, 1977): Similarity $\sigma(s,t)$ related to

- # features in s and t have common
- salience of features f()

$$\sigma(s,t) = \frac{f(s_n \cap t_n)}{f(s_n \cap t_n) + \alpha f(s_n \setminus t_n) + \beta f(t_n \setminus s_n)}, \alpha, \beta \ge 0$$

- features => m-types
- salience => IDF and TF
- different values of α , β to change frame of reference
- Variable m-type lengths (n=1,...,4), entropy-weighted average

FEATURE-BASED SIMILARITY

Tversky.equal measure (with $\alpha = \beta = 1$)

$$\sigma(s,t) = \frac{\sum_{\tau \in s_n \cap t_n} IDF_C(\tau)}{\sum_{\tau \in s_n \cap t_n} IDF_C(\tau) + \sum_{\tau \in s_n \setminus t_n} IDF_C(\tau) + \sum_{\tau \in t_n \setminus s_n} IDF_C(\tau)}$$

Tversky.plaintiff.only measure (with $\alpha = 1, \beta = 0$)

$$\sigma_{\text{plaintiff.only}}(s,t) = \frac{\sum_{\tau \in s_n \cap t_n} IDF_C(\tau)}{\sum_{\tau \in s_n \cap t_n} IDF_C(\tau) + \sum_{\tau \in s_n \setminus t_n} IDF_C(\tau)}$$

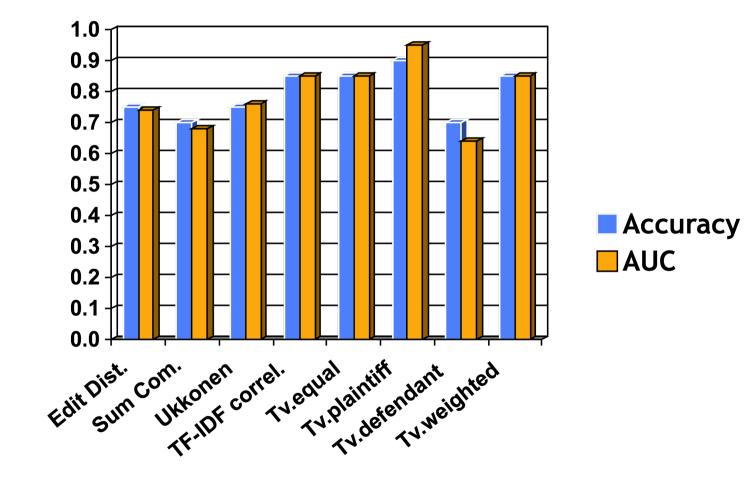
Tversky.defendant.only measure (with $\alpha = 0, \beta = 1$)

$$\sigma_{defendant.only}(t,s) = \frac{\sum_{\tau \in s_n \cap t_n} IDF_C(\tau)}{\sum_{\tau \in s_n \cap t_n} IDF_C(\tau) + \sum_{\tau \in t_n \setminus s_n} IDF_C(\tau)}$$

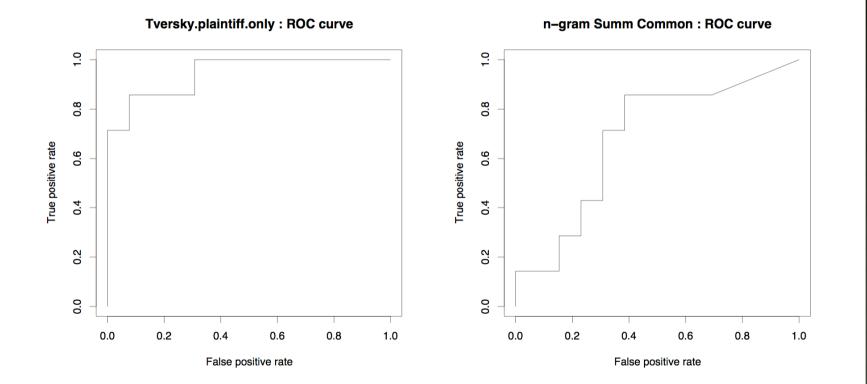
Tversky.weighted measure with

$$\alpha = \frac{\sum_{\tau \in s_n \cap t_n} TF_s(\tau)}{\sum_{\tau \in s_n} TF_s(\tau)} \quad \text{and} \quad \beta = \frac{\sum_{\tau \in s_n \cap t_n} TF_t(\tau)}{\sum_{\tau \in t_n} TF_t(\tau)}$$

EVALUATION


Ground Truth:
 20 cases with yes (no

20 cases with yes/no decision (7/13)


Evaluation metrics

- Accuracy (% correct at optimal cut-off on similarity scale)
- AUC (Area Under receiver operating characteristic Curve)

EVALUATION

EVALUATION: ROC CURVES

Bee Gees, "How Deep Is Your Love"

Observations:

- Decision sometimes based on 'characteristic motives'
- High-level form can be important (e.g. call-and-response structure)
- Reference point can be different

4 SUMMARY/NEXT STEPS

- Court decisions can be related closely to melodic similarity
- Plaintiff's song is often frame of reference
- Statistical information about commonness of melodic elements is important

4 SUMMARY/NEXT STEPS

- More US cases
- UK and German cases (from the "big" western markets)
- Include rhythm in m-types
- Compare to more similarity algos from literature

Thank you for your attention!

COURT DECISIONS ON MUSIC PLAGIARISM AND THE PREDICTIVE VALUE OF SIMILARITY ALGORITHMS

> Dr. Marc Pendzich Institute of Musicology University of Hamburg

Dr. Daniel Müllensiefen Goldsmiths College University of London